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Foreword 

In writing this book, Dick Suiter has created an important resource for 
amateur astronomy. This is a book that will help every telescope maker, every 
telescope owner, and every serious observer learn what a fine telescope is truly 
capable of, and how to obtain from their own telescopes the best possible 
images. If you are an amateur astronomer, whether a raw novice or expert, this 
book is important because it tells you how to get the most from your telescope. 

What makes the star test so remarkable is that it's both very easy and very 
sensitive. The star test is so simple that you're probably already using it—even if 
you aren't fully aware of doing so. Every time you observe, indeed, every time 
you look through your telescope you see how starlight comes together to form a 
star image. This book teaches you how to interpret what you see in an objective 
and meaningful way. 

To perform the star test, you simply observe a star with a moderately high-
power eyepiece, giving careful consideration to the image on both sides of 
focus. The patterns you see in the focused and out-of-focus star images tell you 
whether your telescope is aligned for maximum performance, whether the 
atmosphere is steady, and when the telescope has cooled and is ready to do its 
best. The star test takes only a moment, and because it is so helpful, star testing 
becomes a normal part of your observing routine. 

I first corresponded with Dick Suiter over a dozen years ago, when I con-
tacted him for a short star-testing article that was eventually published in 
Astronomy. Since then he has continually impressed me with his ability to meld 
abstruse theory with practical telescope making. The book you now hold is no 
exception: Dick has combined sophisticated computer modeling with down-to-
earth advice that you can use to learn more about your telescope. The hundreds 
of illustrations he has created allow you to recognize the entire range of factors 
that can influence telescope performance. That makes this book heavy-duty stuff 
in a form that anyone can understand. 

To give you an idea of how star testing can help you, let me describe how I 
have used star testing to get top-notch performance from my first big 
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telescope, a 20-inch f/5 with a Dobsonian mounting. At the time I built it, 
Dobsonians were fairly new, and the total information then published about 
making these large, alt-az instruments would have barely filled a pamphlet. I 
made everything bigger, thicker, and stronger than necessary. Although my 
newly completed telescope's light grasp was marvelous, of course, its star images 
were often mushy until the too-heavy structure cooled. 

The first year I used the telescope, I star tested regularly and, from the air 
currents I saw in the extrafocal images, deduced that both the mirror and tube 
were cooling too slowly, and that the mirror cooled more slowly than the tube. I 
installed a fan behind the mirror to pull air down through the tube and over the 
mirror. It worked wonderfully! With the air currents greatly reduced, star testing 
now revealed a bit of spherical aberration, although hardly enough to interfere 
with most deep-sky observing. I debated for some time whether this problem 
deserved attention and ultimately had the primary refigured. 

The result was extremely satisfying. With the cooling fan and a nearly perfect 
mirror, my big Dob now gave excellent lunar and planetary images. It 
outperformed precision apochromats in giving crisp, brilliant views of Saturn and 
Jupiter (although—to be fair—the apos were smaller). During the 1988 
opposition of Mars, not only did I see Deimos and Phobos for the first time, but 
also enjoyed the best views I'd ever had of the planet itself. Careful star testing 
now revealed that at times the optics appeared slightly pinched. I traced the 
problem to the mirror cell, and found that if I shook the telescope, the mirror 
would settle in its cell and outstanding images would be restored. 

You too will benefit when you become sensitive to your telescope's optical 
performance. If you find that your telescope has a few problems—and what 
telescope does not?—it is best to deal openly with them. Would-be astronomers 
who refuse to acknowledge such problems tend to stop using their telescopes, and 
eventually lose their interest in astronomy. Once you recognize that a problem 
exists, you can possibly use the star test to correct it. Often, it's nothing that 
careful collimation will not solve. If your telescope has properly adjusted and 
excellent optics, the star test will confirm that fact and you can turn your attention 
to other observing issues. 

It is not often that a single book has the potential to open the eyes of a whole 
generation of amateur astronomers. I believe Suiter's Star Testing Astronomical 
Telescopes is such a book. It will enhance the observing pleasure of every 
amateur astronomer who reads and takes this book to heart. 

Richard Berry 
Lyons, Oregon 
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An Introduction to the Author 

I will never forget the first time I met Dick Suiter. I had built my first 
telescope, an 8-inch Newtonian on a Dobsonian mount, in a single weekend. 
The 'scope wasn't a model of the craftsman's art. I had misplaced the hole 
for the focuser a couple of times and covered up my mistakes with pieces 
of cardboard. The telescope was haphazardly finished with some sky-blue 
house paint that had languished in my garage for several years. 

My first forays into my backyard to use the telescope were unsuccessful. 
I couldn't find any actual astronomical objects with it, and I was about to 
forgo astronomy as a hobby. 

A friend suggested that I visit Perkins Observatory with my telescope. 
He had heard that members of the local astronomy club, the Columbus 
Astronomical Society, set up their small telescopes in the shadow of the 
observatory's gigantic dome. A dozen or so telescopes dotted the observ­
ing field that night. Among the group was Dick Suiter, who had earned 
the reputation as a local expert on telescope optics. Hoping that all my 
observing problems could be attributed to bad optics, I asked Dick to test 
my 'scope. 

He shone a red flashlight on the blue paint. "It isn't much to look at," 
I said, embarrassed by the poor workmanship. 

He turned the 'scope on its mount. "Doesn't matter. Works okay," he 
said. He taught me how to align the telescope and turned it to a bright 
star. He looked through the eyepiece and began slowly to rack it in and out. 
After what seemed an eternity to me (it was actually just a few minutes), 
he finally pronounced judgment: "A bit overcorrected with a slightly rough 
surface. Good edge. It'll do." 

"How can he tell all that just by looking?" I thought, as he turned the 
'scope to the Ring Nebula in Lyra. All further skepticism was washed away 
by the splendor of the view. 

A month later, I was using the star test to evaluate other people's 
telescopes. It's that simple to learn. I built 50 telescopes, all Dobsonians, 
over the intervening years, and I've star-tested each one to evaluate the 
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optics. 
All those experiences taught me the value of the star test. Other tests 

are too complicated for the beginner or require special equipment—I've 
always meant to build a Foucault tester, but there never seemed to be any 
point. Others are painfully insensitive to the subtle problems inherent in 
some telescope mirrors. (I've seen some truly awful mirrors "pass" the 
Ronchi test.) The star test is all I've ever needed. 

Dick is the last person who would say that star testing is the only 
useful test of a mirror. For example, it doesn't provide the quantitative 
data necessary during the early stages of mirror figuring. However, it is 
extraordinarily useful in the final stages, where a careful mirror maker is 
looking for visual verification of the Foucault data. 

When our group was working on the Columbus Astronomical Society's 
16-inch mirror, we got the mirror as well figured as we could using the 
Foucault test. Then, night after night, Dick set up the optics in a makeshift 
mount in my backyard. With rouge and infinite patience, Dick made a few 
passes with the polishing tool, star tested it, and made a few more passes. 
The end result is the best amateur-made mirror I have ever used. (The 
views of Jupiter's cloud belts are to die for.) The mirror's final figure was 
verified in the telescope under the stars. And that is as it should be. 

The star test's greatest problem has always been the lack of simple, 
widely available instructions on how to do the test and a clearly articulated 
argument for its advantages over other methods of evaluation. 

You hold those instructions and that argument in your hands. Some of 
you who are convinced that other methods of testing are superior will, I 
think, be impressed by Dick's lucid and irrefutable arguments for the star 
test's sensitivity and utility. The star test offers a unique combination of 
simplicity, elegance, and power. 

Practically every amateur astronomer I know learned the star test from 
Dick or learned it from someone who learned it from him. With this work, 
Dick's patience and talent for explaining the technique will get the wider 
audience they deserve. 

The most important lesson that Dick taught me that night at Perkins 
Observatory was that a good set of optics, well mounted and superbly 
aligned, is a doorway to infinite worlds. When the star testing was com­
pleted, Dick and his friends showed me dozens of star clusters, nebulae, and 
galaxies in my dog-eared, homemade instrument. My life was changed that 
night so long ago. I hope yours will be enlivened in the same way—with 
the help of a fine telescope pointed upward at the stars. 

Tom Burns, Director 
Perkins Observatory 



Preface 

This book is about one method of testing the optical quality of telescopes. It 
goes by the informal name of "star test," although it would probably be more 
accurately named "point source" testing. The reason stars are used as test objects 
is not because there are so many, but because stars appear infinitesimally small. 
Thus, they act like true points. The job of the telescope in this case is to map one 
point in distant space to one point on the image. Stripping the complexity of 
imaging to this minimal task, we have some hope of discovering how the 
telescope fails or succeeds. 

The point-source test was first used to fabricate a telescope in 1722 when 
John Hadley used it to make the earliest astronomical Newtonian reflector. 
Hadley employed a variant of the star test, since his source was a nearby pinhole, 
but all the essential elements of the star test were used. He drew the eyepiece to 
both sides of the image and judged the behavior of light in focus by what he saw 
on each side (King 1955). 

However, the star test has never enjoyed popularity as a sole method of 
testing during fabrication. Even after Hadley's example, other tests were 
preferred. The star test usually doesn't yield surface profiles, and it is not a 
convenient indoor evaluation technique. That does not mean that its use in 
telescope making hasn't had a few outspoken adherents, but the star test's most 
popular function is final evaluation of a completed working telescope. 

Mathematical calculation of the appearance of an image is possible, but that 
doesn't mean it is easy. Diffraction calculations, though conceptually simple, are 
almost intractable computationally. Only a few canonical examples were 
calculated using analytic (i.e., "paper-and-pencil") methods. Diffraction had to 
wait for the modern electronic computer before cases of general interest to 
telescope users were solved by any but the most hardy and persistent optical 
theorist. 

This difficulty explains the comparative rarity of good instructions for 
viewing various aberrations. Each defocus position requires a separate, lengthy 
calculation. It is no wonder that diffraction patterns resulting from aberrations 
were seldom calculated before the ascendancy of computing 
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machines. 
Instead, observers relied for a full century on the encyclopedic experi­

ence and drawing skill of one individual, H. Dennis Taylor. In 1891, he 
published a tiny book with a set of star-test drawings reproduced photo­
graphically and pasted in the frontispiece (Taylor 1983).1 These drawings 
have been reprinted many times since, and Taylor's descriptions have been 
summarized in a number of books (e.g., Twyman 1988, Bell 1922, and 
Ingalls 1976). 

Taylor's little book is heavily oriented toward the refractors that domi­
nated the astronomical community of his time. It doesn't deal with prob­
lems appearing more commonly in reflectors, such as obstruction and turned-
down edge. As such, Taylor's drawings have led observers to thirst for more. 
Among other goals, this book is an attempt to modernize and extend Tay­
lor's star-test descriptions. It fills in much of the reflector performance that 
was neglected in his seminal work. 

During the century since Taylor's book was published, there have been 
few works dealing exclusively with the star test. W.T. Welford (1978) 
published one review article in which he summarized the sparse literature on 
the technique. He again had to fall back to verbal descriptions, because he 
didn't possess a method for graphically rendering the complex star images. 

One of the enabling factors of this book is a computerized graphics-
arts language. The diffraction images calculated here are composed in the 
language called PostScript, by Adobe Systems, Incorporated. PostScript 
allows one to calculate the brightness of a pixel and place it in the image 
at its precise location. No diffraction figure in this book has been drawn 
by hand or otherwise represents a fallible retouching effort. This claim 
does not imply that the images seen in this book are perfect. They have 
my contrast preferences and the inevitable sampling errors, as well as the 
imperfections of not precisely knowing what will be printed on the final 
page. At least, all errors are uniformly applied to each pixel of the frames. 
The calculated images in this book are as near to optically correct as the 
publisher and I can make them. The goal all along is to convince you that 
these images are authentic, if not genuine. 

With this emphasis on graphics in mind, the book has also been printed 
on expensive glossy paper. This paper type is customarily reserved for 
photographic plates and is typically used for only a few sheets. Glossy 
paper is used here because it offers a gloriously wide dynamic range. This 
paper is very dense and packs more tightly than ordinary book paper. As 
a consequence, this volume is superficially thinner than its 380-odd pages 
would indicate. I hope this compactness will also allow testers to transport 

1More recent editions do not have this plate. They reproduce the photo on a printed 
page. 
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the book to observing sites more readily than they otherwise might. 
This book has been written for the amateur astronomer with a telescope 

of small to moderate size (apertures less than 20 inches or so). The book 
may occasionally be useful to professional astronomers and optical experts, 
although the former usually have to deal with the imaging peculiarities of 
huge telescopes and the latter may have already formed diverse opinions 
about many of the topics. When faced with the choice of rigor versus clear 
exposition, I almost always opted for clarity. Thus, the book resembles 
more a personal viewpoint than an authoritative document. 

I have attempted to keep the less instructive aspects of Huygens-Fresnel 
diffraction theory to the rear of the book. However, I was unwilling to throw 
them out entirely. Otherwise, most of the book would have resembled 
a cold assertion, leaving the reader to believe or disbelieve me. I was 
also unwilling to completely remove equations from the central discussion, 
but I try to limit them to elucidating important topics. The reader need 
not understand the mathematics in the body of the text to use the star 
test effectively, but fullest comprehension of causes and effects will reward 
those who have studied these discussions. Appendix Β is only for those 
wishing detailed knowledge of the way these complicated figures have been 
generated. It is by no means "required." Appendix D, on the other hand, 
is helpful to casual readers because it contains the labeling description for 
the star-test figures. It explains the manner in which I "jack-knifed" the 
focal region to fit on a printed page. Be sure to consult it when you finally 
encounter these figures. 

Some may accuse me of trying to light a fire beneath manufacturers, but 
that is not my intent. My motivation is almost the reverse. Too long have 
manufacturers been forced to make inferior telescope optics because their 
customers buy telescopes the way they buy a sack of potatoes—based on 
price alone. If buyers can't determine optical quality, other less important 
factors (such as price) become the only criteria in their decision. What I'm 
doing is placing a reliable testing method in customers' hands. The star 
test will allow them to determine that Brand B, which costs a little more, 
is indeed a better product than Brand A. Manufacturers can return—with 
some relief, no doubt—to making quality optics, and their customers will 
be able to tell the difference. 

I would like to thank the host of people who have helped me with this 
book. I can't list all of them here, but I would like to mention the following 
contributions especially: 

Bob Bunge, Peter Ceravolo, and Bob Gent for kindly supplying me 
with various references. 

Ray Lim for locating typographical errors in the difficult mathemat-
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ical appendices. 

Ε. Wolf and R. Kingslake for going out of their way to help me get 
reprinting permission on one of the figures in Appendix B. 

Skilled mirror-maker Bill Herbert for his Foucault and Ronchi test 
photographs. 

Editor Tom Burns for converting my meanderings to reasonably co­
herent English. 

Diane Lucas, Richard Berry, Michael Brunn, Richard Buchroeder, 
Roger Sinnott, and Bill Zmek for the unenviable job of doing detailed 
technical reading on my manuscript. 

Thanks to these people, the book is more accurate and much clearer. (Of 
course, any errors that remain are strictly my fault.) 

H.R.S. 
Panama City, Florida 
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Chapter 1 

Introduction 

1.1    Telescope Evaluation 

I'm going to tell you a little-known fact. Telescopes are easy to test. All that 
is required is a good high-magnification eyepiece, a conveniently placed star or 
illuminated pinhole, and some experience. In fact, telescopes are so easy to test 
that I recommend you check the optical train of your telescope every time you 
use it, as a monitor of alignment, proper optical support, and atmospheric 
conditions. 

You will notice that the methods proposed in this book are a great deal 
different from the methods telescope makers use. Telescope fabrication, as 
contrasted with telescope evaluation, requires that corrective measures be 
indicated. Hence, telescope makers favor methods that lead to profiles of the 
optical surfaces, or at least the errors in the slope of those surfaces. They can use 
such information to decide where they must remove slight amounts of glass 
during the next figuring step. 

Such methods demand specialized equipment, and more importantly they 
require skills best learned at the elbow of an expert. Optical shop tests tend to 
require delicate visual interpretations, and someone usually has to physically 
demonstrate the test to a person unfamiliar with it. 

Telescope evaluation, on the other hand, is a test of a finished product. It 
requires little or no specialized equipment. The evaluator cares little how an 
optical piece can be improved. The test is purely a yes-no decision: Is the optical 
train good enough to transmit the image or is it not? The evaluation 
encompasses the entire optical path, even those elements not customarily 
included in the telescope, from the top of the atmosphere to the eye of the 
observer. 

The star test evaluates telescopes in their final configuration, doing precisely 
what they were intended to do. The star test is not easily reduced 

1 
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to numbers, but it is very sensitive. A telescope that "passes" the star test need 
not be evaluated with a bench test. It has already met the most stringent criterion 
necessary to deliver beautiful images. 

The star test is an examination of the image of a point source, most 
commonly a star, both in focus and on both sides of focus. The power of the star 
test is contained in this simple motion of the eyepiece to examine the expanded 
diffraction disk on both sides of focus. Not only is the expanded spot bigger and 
hence easier to see (the focused diffraction disks of most astronomical telescopes 
are tiny), it "unfolds" into a unique representation of the aberrations that caused 
it. In particular, an out-of-focus circular image appears similar at equal small 
distances inside and outside the focal point but only if the optics are excellent.1 

The expanded disks will appear different if any aberration is degrading the 
system. The sensitivity of this test is phenomenal. My first mirror was a 200 mm 
f/6 reflector that regularly shows excellent images of the planets, yet still just 
barely passes the star test. It shows some inclination towards overcorrection, 
roughness, and a turned edge. 

The telescope is automatically prepared to do the star test and the test is 
conducted with all optical elements in place. Many of the optical defects 
discussed in this book have nothing to do with errors on the glass, and would not 
even have been detected in the shop tests during fabrication. For example, the 
200 mm reflector mentioned above is carefully held in a 9-point mirror support, 
and still shows some slight evidence that the mirror sags in its cell. 

You will grow to rely on the star test as a check on alignment. A quick turn 
on the focuser is all that's needed to verify that misalignment is not disturbing 
your images. You'll come to depend on the appearance of outside-focus images to 
see what is happening in the upper atmosphere. When good seeing comes and 
goes, you can shift that evening's observing schedule to take advantage of 
superior tranquility. 

1.2    Testing the Surfaces 

You may rightly suspect that telescopes are not easy to make. The objective, 
or main optical element, of an astronomical telescope contains the most accurate 
macroscopic solid surfaces yet shaped by humans.  Typical 

___________________________________ 
1At this point, terminology should be defined to avoid subsequent confusion. In all further 

discussion, an image is said to be "out of focus" if it is defocused in either direction. "Inside focus" 
means that the eyepiece's focal plane is placed between the main optical element and focus; "outside 
focus" indicates that the eyepiece is withdrawn beyond focus. "In focus" and "focused" are used as 
synonyms, meaning that a pointlike object is focused to its minimum size. 
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tolerances are a thousand times smaller than the usual accuracies of a metal-
cutting lathe. 

As a means of comparison, let us imagine the surface of a common 200-mm 
(8-inch) telescope mirror expanded to 1 mile (1.6 km). If this mirror had the 
usual thickness ratio of small mirrors, it would be 880 feet thick (268 m). In 
common metal-shop practice, it is normal to machine such an 8-inch surface to a 
thousandth of an inch, or to a scaled accuracy of 8 inches. A wavelength of light 
expands from 0.000022 inches to 0.17 inches (4.4 mm) at this scale. The 
maximum optical error tolerable on such a surface would be only 0.55 mm, or 
about 2/100 inches. Premium optics would be made to an accuracy of less than 
0.01 inches (0.25 mm)—a playing-card thickness error on a disk a mile across 
and 300 yards high. 

Clearly, testing such surface accuracy is not trivial. Common calipers, a 
measuring device of machinists, have a maximum accuracy of only about 10 
micrometers (μm), or about 20 wavelengths of green light. Even if sufficiently 
accurate calipers were possible, one would have the additional problem of 
repeatedly placing them on the curved surface. The spread of measurements 
would greatly exceed the inherent accuracy of the measuring tool. 

Obviously, some device or technique which can sense micro-deformations 
on the surface is needed. Light itself is the most appropriate tool. Less certain is 
the precise manner to use light to bring out these defects without demanding the 
same stringent measurements as gauging the surface profile by physical contact. 

For example, it is not difficult to come up with completely useless ways to 
measure surfaces. One could place a point source of light (say, a pinhole) to one 
side of a mirror (see Fig. 1-1) and reflect it to a spot on a screen. By moving the 
mask around over the objective, we could see how the spot was forced to shift. 
In principle, this method would contain all the error information, but it is not the 
easiest way of proceeding. The spot is fuzzy, the system is difficult to align and 
focus, and the measurements are difficult to reduce because they are taken far 
from the optical axis. The position of the spot is dominated by the overall 
curvature of the surfaces and the motions of the mask, rather than the interesting 
deviations from the curvature. The way to perform an accurate and simply 
interpreted test eliminates first-order difficulties such as the innate curvature of 
the surface. It is best done along the optical axis either near the focus or the 
center of curvature of the lens or mirror. 

Accurate tests are possible when the strengths of the testing geometry are 
exploited. The useless test in Fig. 1-1 becomes the very accurate caustic test 
when the image spot is moved near the center of curvature and the 
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Fig. 1-1. A poorly-designed testing arrangement. Alignment, focusing, and data, reduction would be a 
nightmare even though the test contains all of the information required to infer the surface shape of 
the mirror. 

sensor is fitted with a knife edge or wire. 

1.2.1     Sources of Errors 

Accuracy of surface shape is a function of the stiffness of the material and the 
definition of just what surface accuracy means. For example, most machinist's 
gauge blocks and flat surface plates, the absolute standards by which they check 
their measuring tools, are rectangular chunks of steel. Steel is a fairly inflexible 
material, and machinists think of steel as capable of holding its shape. These 
blocks are more than accurate enough for the kind of precision demanded in 
machining as long as the temperature of the room does not vary too much. For 
optical use, however, the scale of precision is much smaller. 

Microscopically, a block of steel expands under heating. Its linear dimensions 
depend on the ambient temperature. This change wouldn't ordinarily affect 
optical performance—after all, a sphere is still a sphere even if it has a slightly 
different radius. But as temperature varies, portions of the metal change faster 
and internal stresses build up. The surface slightly buckles as the temperature of 
the piece non-uniformly follows rapidly changing outside temperature. 
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Likewise, glass deforms under heating. Although it swells less than metal, 
the thermal conductivity of glass is lower and it has a problem getting rid of 
heat. Mirrors are typically coated on one side with metal, which complicates the 
way they radiate energy. The temperature of glass is a complex function of 
thermal radiation, convective air cooling, and conduction through the relatively 
few points at which the optical disk is supported. 

Glass not only changes shape under heating, it deforms under pressure. A 
helpful way of viewing glass disks at the wavelength scale is to think of them as 
sheets of rubber. If you push on the top, the surface goes down. If you 
incorrectly support the bottom, the whole disk sags and the upper surface will 
deform. Thin pieces are harder to hold flat than thick pieces, large pieces more 
difficult than small ones. The cells that hold optics must not pinch or warp them. 

No process is as stressful to optics as fabrication. Simple grinding even has a 
few pitfalls. Say that a mirror disk has a slight amount of cylindrical curvature 
on its rear side—it rocks on the backing instead of sitting flat. Under the 
pressure of grinding, it will deform away from its "backbone" and suffer 
astigmatic curvature when the pressure is relieved. 

The fabrication stage at which most errors originate, however, is polishing. It 
takes place on polishing pitch, a material that no one fully understands. Some 
experienced opticians have learned the limits and general behavior of pitch, but 
even after years of experience, they are often surprised by its unstable nature. 

Pitch is a highly viscous fluid used in a thin layer (3 to 6 mm) covering a 
disk used as a tool. This lapping surface (or "lap") is usually crosshatched with 
grooves that allow the fluid to spread and conform more readily to the polished 
surface. Pitch will behave more-or-less as a solid at fast speeds and as a liquid at 
slow speeds. For example, if you hit it with a hammer, it shatters. Lay a stick of 
pure pitch across the lip of a bowl, however, and eventually you'll find it has run 
to the bottom. 

During polishing, powdered abrasive grains sink into the pitch surface where 
they are held as microscopic scrapers. Certain polishing agents are more 
effective than others, and cause more heat to be generated in the lap. The 
resistance to deformation in pitch varies strongly with temperature. Its 
characteristics on the outer portion of the disk will vary markedly from those of 
the inside because wet pitch on the periphery is exposed to the air and cools 
more rapidly by evaporation. If polishing is stretched too long, the pitch tool 
dries out, becomes overheated, and loses its shape. Bad polishing habits will 
result in excessive wear at the edge of the optical disk, giving it a run-down 
appearance under sensitive testing. Not varying the stroke when using a 
machine may cut shallow circular channels in the optics. In the case of fast 
aspherical optics, more polishing must be applied 
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on the center of the disk.   Clearly, many opportunities exist for errors to find 
their way to the optical surface. 

1.2.2     Measures of Optical Quality 

One way of gauging optical quality is to measure the peak-to-valley 
wavefront error. A wavefront is a line traced along the crest or trough of a wave. 
In regions far from focus, a wavefront is perpendicular to the direction of wave 
motion. Using a convenient example, a wavefront is the crest of a surfer's wave, 
parallel to the beach. The wave is moving toward the beach, at right angles to the 
crest. 

A perfect converging wavefront is part of a sphere with its center at the focus. 
The light from a point source converges to the minimum spot size, called the 
"diffraction disk." After passing through an optical system with errors, a 
wavefront departs from the spherical shape, and the image spot will be larger and 
less intense. 

Imagine two spheres with a common center at focus, somewhat like the layers 
of an onion. The outer layer touches the point that lags furthest behind the real 
wavefront and the inner one touches the point closest to the sphere's center. The 
different radii of these spheres defines the total wavefront error. (See Fig. 1-2.) 

J.W. Strutt (Lord Rayleigh) stated an often quoted rule: If the total wavefront 
error—peak-to-valley—exceeds 1/4 wavelength of yellow-green light (550 nm), 
then the optics begin to noticeably degrade. The reason that the image begins to 
fall apart is simple—a significant portion of the converging wavefront now has a 
phase mildly "disagreeing" with the majority. Rayleigh's rule is not a hard limit. 
Some people don't easily perceive diminished quality until total wavefront error 
exceeds 1/3 wavelength. Others are more discriminating, detecting degradation at 
1/8 wavelength and below. Much of the sensitivity to optical faults depends on the 
type of observing, the type of error, and the sophistication of the observer 
(Ceravolo et al. 1992; Texereau 1984). 

Below are some variations of the ways that different optical shops state the 
same Y4-wavelength quality: 

• 1/8-wavelength surface." Say the primary mirror has a 1/8-wavelength 
bump on it. The incident wavefront reflects from the peak of the bump 
while the adjacent portion of the wavefront is forced to travel to the base of 
the error. This section of the wavefront moves 1/8 wavelength going in and 
1/8 wavelength coming out, leaving it 1/4 wavelength behind the leading 
edge of the wave. 

• "±1/16-wave surface." If the same 1/8-wavelength hill is not measured 
base-to-crest but measured from its average position, the error 
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Fig. 1-2. The difference between adequate and very good optics. Both of these wavefronts are 
contained within two shells 1/4 wavelength apart, but the rougher one in a) scatters some light beyond 
the radius of the minimum-size diffraction spot. (Not to scale.) 

is spuriously divided by two yet again. 
• "1/27-wave RMS on the surface." This widely-used measure in the optics 

industry is known as Maréchal's criterion (Born and Wolf 1980, p. 469). 
A 1/4 wavelength of spherical aberration (a large-scale departure from a 
sphere) approximately translates to a 1/14-wavelength RMS Maréchal 
criterion (Maréchal 1947). Measuring it on the surface cuts it in half again. 

• 1/31-wave RMS He-Ne laser light surface accuracy." The red light of a 
helium-neon laser has a longer wavelength and the same error appears 
smaller. The easily calculated transition to visual wavelength has not been 
made. 

Nearly every telescope user has a hazy memory of reading about the 1/4-
wavelength Rayleigh tolerance. The accuracies above apparently exceed the 
1/4-wavelength limit with room to spare, but they are different descriptions of 
the same 1/4-wavelength tolerance. 

These differing claims of surface accuracy are not inherently dishonest, as 
long as they are given in sufficient detail that one can pick apart their 
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meanings. In fact, the 1/14-wavelength RMS Maréchal tolerance is superior to the 
Rayleigh limit because it quantifies the fraction of the wavefront that is bent 
away from a perfect sphere. But these accuracies are seldom written with 
decoding instructions, and consumers are left to wonder what the claims mean, 
even if they know the distinctions. 

Advertising claims by commercial firms have therefore been in a confusing 
state for some time. In recent years, a certain fraction of consumer telescope 
makers have sensibly avoided the whole question of assigning numbers to their 
optics. They merely state that their optics are diffraction-limited and let it go at 
that. Such a designation is better than the artificially inflated claims above. 
"Diffraction-limited" conventionally means that the 1/14-wavelength RMS 
Maréchal limit has been met (Schroeder 1987). 

Another factor often neglected in statements of optical quality is the slope of 
the error. If sharp channels, turned edges, or roughness appears on the optics, the 
overall wavefront error can often be contained within the expansive Rayleigh 
tolerance. The anomalous slope does not persist over the whole aperture. The 
sharply sloped fault still diverts light out of the central spot to pollute the rest of 
the image, but the optics are still "officially" perfect. 

A. Danjon and A. Couder addressed this topic in their book Lunettes et 
Telescopes (Danjon and Couder 1935, pp. 518-522). They noticed that some 
instruments could slip by Rayleigh's limit yet possess enough surface roughness 
to scatter a hazy glow through lunar and planetary images. They stated that optics 
could not be judged as "good" until two conditions were simultaneously met: 

1. Over the greatest part of the aperture, the wavefront has a mild slope and 
does not divert light rays outside the diffraction disk. 

2. The Rayleigh 1/4-wavelength tolerance is everywhere obeyed, and over 
most of the aperture, deviations should be appreciably less. 

Condition #2 is just the Rayleigh limit, with a verbal warning having the 
same goal as limiting the RMS deviation. After stating these two conditions, 
Danjon and Couder point out that condition #1 on the slope of the mirror is 
typically more difficult to meet than the 1/4-wavelength condition. Even though 
both wavefronts in Fig. 1-2 are within the Rayleigh tolerance, the wavefront in 
Fig. l-2b would do the best imaging because it is more gently sloped. 

Incidentally, for aberrations that smoothly change over the whole aperture 
(such as the error sketched in Fig. l-2b), the maximum wavefront departure that 
leads to condition #1 is closer to 1/7 wavelength. Thus, optics that truly satisfy 
both conditions are not only good, but excellent. 
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Another number, commonly used as a criterion of optical quality, is the 
Strehl ratio of the aperture (Born and Wolf 1980, p. 462; Mahajan 1982). The 
Strehl ratio is defined as the intensity of the image spot at its central brightest 
point divided by the same image intensity without aberration. The 1/4-
wavelength Rayleigh tolerance on spherical aberration causes a drop of the 
Strehl ratio to the value 0.8. The Strehl ratio is 1.00 with perfect optics. 
Marechal's criterion on the RMS aberration came from noticing that it leads to 
the same decrease in the Strehl ratio. 

The most complete, though expansive, way of indicating optical quality is to 
present the detailed modulation transfer function (or MTF), which is the ability 
of an optical system to preserve the contrast of bar patterns of various spacings. 
It will be the method used in this book. No optical difficulty can escape the 
MTF. Dusty optics, pits on the optical surface, spider diffraction, telescope 
vibration, microripple, aberrations, and obstructions of any sort reveal 
themselves in a lowered transfer function. MTF charts have the advantage of 
giving the spacing of detail that the optical problem attacks. 

Other equally valid measures of optical quality could easily be defined. They 
will be discussed in more detail in Chapter 10. 

1.3    The Star Test—A Brief Overview 

Observers rightly regard an out-of-focus instrument as nothing more than a 
problem to be cured. A telescope is either in focus or is almost useless—at least 
for the job it was meant to perform. When used properly, a telescope must be 
focused as accurately as possible. 

Implicit in the customary use of a telescope is the fixed objective as-
sumption, which regards the image produced by the objective as the whole 
purpose of the telescope. The eyepiece is relegated to the secondary status of a 
mere accessory, a magnifier. It slides along the optical axis and has only one 
correct setting. 

The star test uses the telescope in a new way. We must assume the eyepiece 
has a fixed position. From this viewpoint the eyepiece's field plane is seen as 
the whole purpose of the exercise. The eyepiece is regarded as always being in 
correct focus and examines whatever occupies its field plane. The field plane is 
usually constricted by a sharp-edged mask called a field stop. If you invert an 
eyepiece and look in the bottom, this stop is usually visible as a ring inside the 
base. The field stop is the crisp edge you see in an eyepiece. This edge has 
nothing to do—as it first seems—with the boundary of the objective. 

Figure 1-3 shows an idealized eyepiece. We regard the eyepiece as fixed and 
the objective as mobile. 
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Fig. 1-3. The use of the eyepiece for the star test. The top arrangement shows the usual proper setting 
of an eyepiece. The eyepiece on the bottom shows the star test's inspection of the defocused disk as an 
equally valid setting. 

If, as in the top of Fig. 1-3, the objective is located at precisely the right 
distance to put an image of a star on the eyepiece's field plane, the instrument is 
said to be in focus. The light coming from a point source leaves the rear of the 
eyepiece in a parallel bundle. Fig. 1-3, bottom, shows an out-of-focus instrument. 
Here the path of the rays depicted by solid lines exits the tube in a converging 
bundle that is not focused properly on the retina unless the eye's powers of 
accommodation are very large. 

The "looking path" of two points on the out-of-focus disk is denoted by 
dotted lines. One imagines that the bundle of light is sliced neatly at the focal 
plane of the eyepiece and that the eyepiece images this slice perfectly. If the 
eyepiece is moved to and fro across the position of focus, each slice can be 
examined in turn, and the memory of all such slices forms a collective record of 
the behavior of light near the focus. We are allowed to use this viewpoint because 
the in-focus location of the eyepiece is no more special than an out-of-focus 
location. 

1.3.1     Diffraction Rings 

Almost everywhere, the complicated situation of a converging wavefront can 
be approximated by replacing the wavefront with little "arrows" moving 
perpendicular to it. These arrows are called light rays and the intensity of such a 
beam can be calculated as the cross-sectional area of the ray bundle. However, 
elementary geometry used on a converging light cone leads to an important 
breakdown in the ray approximation. If a certain amount of power is incident on 
an area of aperture, the intensity can be calculated as 
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this power divided by the area.2 Halfway to focus, the area of the cone has 
shrunk to 1/4 of its value right against the aperture, but it still contains the same 
power—so the intensity has increased 4 times. Move halfway again, and 
intensity further increases 4 times to a factor of 16 greater than it was at the 
aperture. You can double it again and again until you get to focus. What 
happens there? 

The ray description has the area of the cone go to zero as the light approaches 
focus. This area must be multiplied by the intensity to make the power the same 
as it was all along the path. Because the speed of light through air is uniform, the 
energy content of the beam neither increases nor decreases. The ray 
approximation says that if the optics are perfect, the intensity of an image point 
is infinite. Needless to say, infinite intensity is impossible. 

During the two hundred years between the invention of the telescope and the 
final acceptance of the wave theory of light, people actually believed there was 
no limit on optical quality. If optics were made of exquisite quality, the central 
spot would shrink in size—or so opticians thought. They must have agonized 
when their optical masterpieces, on which they had worked so diligently, still 
showed that disk surrounded by a system of rings. 

We now know that there is a fundamental limit to imaging. Diffraction 
softens the image in the region of focus. For a given telescope focal length, the 
central spot (called the Airy disk) decreases linearly in diameter for larger 
apertures. The formula for the radius of the Airy disk with aperture diameter D 
and focal length f is 

D
frAiry

λ22.1
=   (λ is the wavelength). (1.1) 

Thus, the diameter of the diffraction disk is 11/im (0.0004 inches) for a 150-
mm (6-inch) f/8 and 5.5/μm for a 300-mm (12-inch) f/4. Since 4 times the light 
was intercepted by the larger telescope and it was squeezed inside 1/4 the area, 
the larger telescope has a central image intensity 16 times as bright. A focused 
diffraction image appears on the left side of Fig. 1-4—the whole square is 
(20λf)/D across. 

To those accustomed to purely symbolic equations, the factor 1.22 in the 
expression for the Airy disk seems messy and inexact, but it is unavoidable. Its 
source is the circularity of the aperture. If we were to make a square objective of 
distance x on a side, the brightest portion of the diffraction spot would be a little 
square with side dimension (2λf)/x. Similarly, apertures 

____________________________ 

2 Radiometrically, this quantity is not the "intensity" at all, but should be called the "radiant flux 
density."  However, this term is conventional among physicists. 
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focused out-of-focus

Fig. 1-4. The theoretical diffraction image of a perfect telescope, both for the in-focus and one 
defocused case. The direction of eyepiece travel does not matter; the out-of-focus pattern looks the same 
on either side. The frame at the left is magnified 4 times that of the right. 

with aberrations and obstructions have their own unique diffraction spot sizes. 
The Airy disk is nothing special, save that it is the perfect diffraction disk of the 
circular window that so many real optical devices resemble. 

Diffraction is an angular effect. The angular blurring of the image is not 
lessened by increasing the focal length of the telescope, or equivalently, the 
magnification. If one doubles the focal length, the Airy disk also doubles in size. 
Until this independence of fundamental image blurring on focal length was 
appreciated, telescopes were commonly specified by their focal length instead of 
their apertures. Nowadays, such terminology appears quaint. 

The central spot is not the whole story. Thin, ghostly rings encircle the bright 
spot. With large instruments under ideal conditions, they are observable out to 3 
or 4 rings, but stars in small telescopes show only one ring readily. 

The out-of-focus pattern of Fig. 1-4 is channeled by some circular furrows. 
These are diffraction rings, too, although their location and magnitude are not a 
simple matter to calculate. The first conjecture would be that the dark lines were 
the previously hidden structure of the diffraction image that is now exposed 
because the expanding disk filled it with light. However, this reasonable guess is 
wrong. The images don't behave that way at all. 

As the focuser is racked in or out, the grooves continue to appear at the center 
and move outward, like ripples spreading from a pebble dropped in a puddle. 
That central point successively dims to blackness and then lightens to become the 
brightest part of the disk.   It does so each time it creates 
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Fig. 1-5. Photo of actual defocused situation calculated in Fig. 1-4. The picture was taken with a 
strongly stopped-down refractor. 

a new ring. The one seemingly unchanging feature of the expanding spot is the 
broad outer ring. It seems narrower as the focuser is turned, but it never goes 
away. 

Notice another feature. The expanded disk is channeled, but its average 
brightness is more-or-less constant. The outer ring is somewhat brighter to 
average out that dark ring just inside of it. Still, except for the slightly brighter 
outer ring, the disk is remarkably flat. This principle is even more true for 
white-light diffraction images. Each contributing color exhibits a different 
number of rings in its expanded disk. The minima of one color sit on top of 
maxima of another color, and the net effect is largely to wash out any variation 
of the interior of the disk. Far out of focus, unobstructed telescopes display a 
flat disk with a clearly defined outer ring separated from the interior by a dark 
ring. Only a hint of grooved structuring exists inside. 

Finally, one last characteristic is fundamental to the star test. The inside-
focus disk is approximately identical to the outside-focus disk. No circularly 
symmetric aberration can appear the same on both sides of focus. If the 
patterns are similar, and if they are circular, the optics are nearly perfect. 

Fi gure 1-5 shows an actual photograph of the defocused situation calcu-
lated in Fig. 1-4. The contrast of the pattern has been increased by using 
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one very pure red light from a helium-neon laser reflected in a small reflective 
sphere. A hole punched in metal and placed over a small refractor created the 
aperture. The theoretical pattern reproduces the real behavior, even showing the 
terracing of the outer parts of the disk. 

1.4    The Reason for Star Testing 

The appearance of a defocused image seen in Fig. 1-5 is rare. Aberrations or 
other optical difficulties conspire to destroy this perfection. By moving the 
eyepiece inside and outside focus, you can detect and possibly identify the 
problems that disturb your telescope. Comparing images seen at the same 
distances inside and outside focus is particularly powerful. The differences 
between these patterns will betray one of the most common optical errors, 
spherical aberration. 

You will seldom see any one aberration unadorned by a mixture of other 
optical effects. The diffraction pattern is hard to diagnose using the star test 
without external information. Diagnosis is not the point, however. You may 
decide after inspection that one of the difficulties described here is dominating 
your system. You should regard identification of the problem only as an 
interesting fact if the mistake is ground into the glass or use it as a guide for 
telescope or site modification if the errors are correctable. 

As you read this book, you will learn the appearance of the best image 
possible, both in and out of focus. That appearance does not vary. It may be 
modified by obstructions, but the effects of a secondary are predictable. 

A good stellar image has a short list of identifying characteristics: 
1. The in-focus stellar image is circularly symmetric; it has a dim ring 

hugging the outer perimeter of the diffraction disk, and rings beyond that 
are vanishingly dark. (Bad optics have rings too, but they are bright and too 
many of them can be counted. They are often asymmetric.) 

2. The out-of-focus image is circularly symmetric; it is identical for all equal 
distances on either side of focus. (The images of aberrated apertures can be 
one or the other, but they are not both identical and round.) 

3. The out-of-focus image has a fairly flat distribution of intensity along the 
radial direction, except for a slightly brighter outer ring. It is divided by 
diffraction grooves, but they are of very low contrast. They are mostly 
washed out in white light (except for the inside of the outer ring and the 
outside of the secondary shadow, if any). 

4. If a central obstruction is used, its shadow reappears during defocus at 
equal distances on either side of focus. 
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You will also learn a systematic way of identifying optical errors and see 
image intensity patterns calculated for known amounts of aberration. Using this 
information, you may be able to estimate the size of your own telescope's 
aberrations and act on them if they are severe. 

It is also useful to change viewpoints. Many useful concepts and procedures 
in modern physical optics can be used by observers to more fully understand 
their instruments. The first and greatest of these concepts is to view the 
telescope as a generalized filter. We can then use ideas developed for the 
electronics industry, with a few modifications changing the terminology to 
optics. The second concept is the idea that light is a wave. Diffraction causes 
fundamental limits to image quality. Using the viewpoints of wave optics and 
filtering theory,3 we are forced to rely less on the questionable store of folk 
wisdom, mythology, and belief that has accumulated around telescope use. 

3 This way of looking at the process of imaging is called Fourier optics. 



Chapter 2 

An Abbreviated Star-Test Manual 

2.1 Some Necessary Preliminaries 

You will need a high magnification eyepiece to conduct the star test 
successfully. The exact power varies from telescope to telescope and de­
pends on what you are trying to see, but it is around 10 per centimeter 
of aperture. For a common 20 cm Schmidt-Cassegrain telescope, magni­
fication should equal 20 x 10 = 200. Since the focal length of such an 
instrument is 2 meters, the eyepiece focal length should be around 10 mm. 
Low focal-ratio instruments are not evaluated to the same degree of preci­
sion as planetary telescopes, so you can use lower power. In fact, you may 
be forced to compromise, because high-power eyepieces for such telescopes 
are not commonly available. Refractors demand higher magnification. 

You should set up your telescope so that it doesn't overlook nearby 
roadways or house roofs, because those structures hold the day's heat and 
slowly release it at night. Parts of the star test can be done peering through 
a small amount of turbulence, but it is best to avoid additional sources of 
aberration when possible. You should also allow your telescope enough time 
between setup and star test so that it can approach ambient temperature. 
The instrument need not be transported to a dark-sky site since the test 
target is a fairly bright star. 

The test is immeasurably aided by a well-aligned instrument. If possi­
ble, collimate your telescope before testing it. One of the sections below 
teaches you how to recognize severe misalignment, but further testing will 
temporarily be halted if the telescope is not at least coarsely aligned (see 
Chapter 6). 

It is unnecessary to wait for full darkness, but you must be able to find 
a star. The best star for 4-6 inch telescopes is about second magnitude, but 

17 
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larger instruments require correspondingly dimmer stars. Tiny refractors 
may demand a first magnitude star. Daytime tests can also be performed 
using the glitter of the Sun reflected in a smoothly spherical Christmas-
tree ornament. Place it 60-300 meters away1 with the intervening path 
over grass. Try to hang the bulb so that it is viewed against a smooth 
background. 

If you wear eyeglasses, leave them on. This warning should only ap­
ply to those suffering from astigmatism, but refocusing a strong correction 
normally handled by glasses may force the eyepiece to add anomalous aber­
ration. It's easy enough to prevent this extra source of error. Besides, you 
only need to inspect the center of the field of view. 

The most effective form of the star test requires that you know how far 
you have defocused the image. This detail will be explained in Chapter 
5, but the rest of the chapter will introduce you to most forms of optical 
problems. 

Finally, before you begin to evaluate your instrument, decide what you 
realistically expect it to do. Does it have a low focal ratio for that type of 
instrument? A Newtonian telescope of f/5 or below is making a compromise 
of optical quality with physical size. It should not be judged to the same 
standards as a Newtonian mirror with focal ratio of f/8. Similarly, a richest-
field achromatic refractor with focal ratio of f/5 should not be held to the 
same harsh tolerances as an obvious lunar-planetary refractor. 

2.2 Optical Problems in Turn 

The star test can be used with any telescope if you keep in mind only 
one of the principles discussed in the last chapter: If the optics are perfect, 
the defocused images are fairly uniformly-illuminated disks. They appear 
the same at similar distances inside and outside of focus. 

The first procedure to try is called the "snap" test. Often, this crude 
evaluation is enough to judge a telescope as bad. Using high magnification, 
wiggle the focuser back and forth through best focus. Good telescopes will 
snap into crisp focus quickly. Bad telescopes will offer a range of equally 
acceptable focus positions, none very good. You will be uncertain about 
precisely where to stop your hand (Suiter 1990). 

Don't condemn the instrument too quickly on the basis of poor perfor­
mance on the snap test, however. This quick method has several practical 
difficulties. Often, the instrument is not rigidly mounted, and it's difficult 
to tell the condition of the image while your hand is shaking the telescope. 

________________________________________________________ 
1 See Chapter 5 for accurate limits of bulb size and placement. The larger distance is 

for large, fast instruments. 
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In addition, some observers have eyes that are capable of large focus ac­
commodations. Eye focusing is not always under conscious control. As the 
focus is approached, the eye locks in and the internal focusing mechanism 
subverts the test. 

The perfect circular aperture has only one appearance for the diffraction 
disk at each value of defocus. All modifications to this pattern represent 
various levels of optical problems. Such difficulties exist in three general 
categories: 

1. Baseline characteristics of the optical system, such as 

(a) secondary mirror or diagonal obstruction of the optical path, 

(b) spider vanes in front of the mirror or mirror-clip blockages, 

(c) transmission variations (vignetting and imperfect coatings), 

(d) color variation in the refraction of the lenses. 

2. Transient or repairable problems, such as 

(a) misalignment or abnormal tilts of the optical elements, 

(b) atmospheric turbulence effects, 

(c) artifacts caused by temperature differences near or within the 
telescope, 

(d) unusual strains in the optical elements (such as pinching or sag­
ging of thin mirrors), 

(e) dust or dirt on the mirror or lenses. 

3. Errors on the glass, such as 

(a) spherical aberration (a failure of the wavefront to conform to a 
sphere), 

(b) rough optical surfaces (causing light to be scattered from the 
central spot), 

(c) zones (light circular hills or trenches in the mirror, including 
turned-down edges of the glass disks), 

(d) chromatic aberration (uncorrected color errors), 

(e) astigmatism (non-uniform stretching of the image along an axis). 

Some of these errors are discussed briefly below, and some are saved 
for the main body of the book. What you must keep in mind is that 
there is a proper ordering for consideration of optical errors. You have to 
learn to recognize the characteristic out-of-focus star patterns that are a 



20 Chapter 2. An Abbreviated Star-Test Manual 

consequence of your choice of optical system (category "1" above). For 
example, nothing will get rid of the obstruction in simple reflectors, so you 
must expect its shadow in the defocused star image. 

Next, you must learn strategies that lead to minimum interference from 
the temporary or curable difficulties of category "2." You cannot make 
a valid check for slight astigmatism if your instrument is hopelessly out 
of alignment. If you take a warm telescope from the house to the cold 
outdoors, the images will dance and swirl. Your tube frequently ducts the 
heat off the mirror, causing the stretching characteristic of tube currents. 
Often, your optics are cruelly bound into their cells, and the warping caused 
by such stresses masks true optical errors ground into the glass. Finally, 
you must determine if the atmospheric seeing is good enough to do a valid 
test. While the star test is less sensitive to turbulence than the double-star 
resolution evaluation, it is best done under quiet skies. 

Once you have determined that category "2" errors are sufficiently small, 
you can go on to look for errors in the shape of the glass. These errors 
are the most debilitating because nothing can be done about them, save 
refiguring the optics. Even here, the order is important. You should look 
for spherical aberration first because it is the most common error. 

Finally, you should not defocus the image too far. If you do, you will 
find no errors. If you are testing a fast f/4 Newtonian, you will probably see 
most of these errors best with eyepiece motion less than 1/30 inch (0.85 mm). 
If you are testing a slow f/10 Schmidt-Cassegrain, the same sequence of 
images is visible with eyepiece motions of 1/5 inch (about 5 mm). These 
values are taken from Table 5-1. 

2.2.1 Secondary Mirror Obstruction 

The inside-focus pattern is the same as the outside-focus pattern even 
for obstructed instruments. Though the presence of a diagonal or sec­
ondary mirror degrades the optical quality a little, the appearance of the 
aberration-free image on either side of focus is the same for good optics. 
As an example, an otherwise-perfect aperture is shown in Fig. 2-1 as the 
obstruction is increased to 20% and 33%. 

The most remarkable change from the unobstructed behavior is the 
coarseness of the pattern. We have traded the fine tracery of the unob­
structed pattern for the unsubtle variations caused by the secondary. Only 
two wide bright rings are shown in the lit region outside the secondary's 
shadow in the 33% pattern. Fewer dips in intensity are seen across the disk. 

The sole difference between these three rows is the size of the secondary. 
Why should a tiny obstruction—only 1/9 of the surface area—have such a 
profound effect? 
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Fig. 2-1. Central Obstruction. Images from three perfect telescopes are shown from inside focus 
(left) to outside focus (right). Typical behaviors of (top) refractors, (middle) long-focus Newtonians, 
(bottom) commercial Schmidt-Cassegrains. 

First of all, it doesn't really cause that big a difference. Those dips are 
extremely delicate and they are destroyed by nearly anything (as in mixing 
together colors in white light). Except for the minor brightenings and the shadow 
at the center, the disk is still fairly uniform, and it is still identical on opposite 
sides of focus. 

For the purpose of diffraction calculations, we are allowed to pretend that the 
shadow is a miniature aperture, only out of phase with the larger opening (called 
Babinet's principle—Hecht 1987, p. 458). This tiny blockage has a much larger 
diffraction pattern, just as if the telescope were stopped down to the secondary's 
size. But remember, it is imbedded as a tiny correction to the larger pattern 
surrounding it. Thus, the small shadow's diffraction pattern is not visible as a 
distinct entity, but it causes enough coarse changes to destroy the lace-like 
variations seen in the out-of-focus disk of the unobstructed aperture (see Fig. 1-4 
or 1-5). 

The other feature of note in Fig. 2-1 is the little bright spot at the center of the 
out-of-focus shadows. Interestingly enough, the successful observation of such 
spots is part of the experimental confirmation of the wave theory of light. When 
Fresnel first presented his paper on the wave theory to the French Academy in 
1818, one of the listeners was S.D. Poisson, a vehement opponent of the light-as-
waves description (he was a propo- 
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nent of the light-as-particles ray theory). He used Fresnel's new theory of 
diffraction to show that a bright spot should appear at some locations in the 
shadow of a circular obstacle. Poisson thought that such a ridiculous conclusion 
would settle the nonsense about light waves once and for all. Imagine his chagrin 
when this spot was found soon after. In fact, it had been discovered long before, 
and the report had escaped notice by optical theorists. This little bright patch is 
still called Poisson's spot. 

The spot appearing here is a composite of the central spot expected from the 
full aperture and the inner negative aperture. However, a Poisson spot is 
observable without even using an outer aperture just by carefully arranging a 
circular shadow in a beam of light diverging from a pinhole. 

 
Fig. 2-2. Misalignment. A severely misaligned reflector with a secondary obstruction of 30%. On the 
left is a focused image and on the right is the same image defocused. The magnification of the focused 
image is 6 times that of the defocused one. 

2.2.2     Misalignment 
Misalignment can be exposed by star testing. In fact, before testing can be 

continued much further, the optics must be properly collimated. This procedure 
is described in more detail later, but Fig. 2-2 depicts a typical misaligned 
Newtonian telescope. The region of good imaging may be outside a high-
magnification eyepiece's field stop in a misaligned telescope. Misalignment 
aberrations can be straightforwardly corrected, so you should not greet their 
appearance with a feeling of dread. Assuming nothing is wrong with the glass, 
such aberrations will vanish in the center of the field with proper alignment. 

The focused image has a small amount of astigmatism but mostly shows 
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the effects of coma. The word coma comes from Latin, meaning "hair" and 
is also the root word of the familiar astronomical term comet. Coma, when 
severe, stretches the image out into two wing structures. 

2.2.3 Atmospheric Motion and Turbulence 

Another troubling image aberration is caused by wavefront passage 
through the many atmospheric turbulence cells occupying the long cylinder 
of air in front of the instrument. This tube of air is always part of an earth-
bound optical system. Refraction by air is very small, but it does exist. It 
changes with temperature and pressure. 

Hot air is lighter than cold air, and the ability of air to refract light 
increases with density. Density differences also result in a fundamental 
instability of the atmosphere. Sunlight chiefly heats the ground, leaving 
little energy in any particular volume of air in its passage through the 
atmosphere. The hot ground warms the air above it, and the warmer air 
becomes less dense. The cool air above it falls, and the warm air rises to 
occupy the same volume as the cool air, making a temporary vortex. At 
some point, the decrease in pressure cools the rising warm air, and the 
falling cool air warms for the opposite reason. The two volumes of air have 
just changed places. The ground is now slightly cooler, and both volumes 
of air are slightly warmer. Perhaps the upper volume of air will become 
unstable with respect to a still higher volume of air. 

Inefficiencies of the process make the difference in temperatures of the 
two layers less profound, and without further heating of the ground, the 
process will wind down like an old clock. Such motion is an invisible cyclical 
heat engine, transporting energy from the hot ground to the cool upper at­
mosphere. The energy of sunlight percolates upward by convection through 
a cauldron of air. 

During the daytime, this heating continues. Convection cells persist 
and sometimes grow. Leavened by the efficient heat transport properties 
of water and taking advantage of the shade provided by clouds, convection 
structures can expand to colossal dimensions—beyond little wisps and dust 
devils, beyond even thermal currents exploited by soaring birds. They can 
grow to summer afternoon thunderstorms. At the margins of the major 
convective structures are fine-scale cells, and at the edges of those little cells, 
even finer scale cells, until the swirls disappear into seething turbulence at 
microscopic scales. 

It is no surprise that solar observation is usually best conducted in 
the morning, before the ground has heated much. A daytime test using 
the image of the Sun in a reflective sphere is best done in the very early 
morning. Also, turbulence is strong anywhere near clouds, since clouds are 
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a flag that indicates one of these gigantic heat engines is operating. 
It is nighttime that mostly concerns us, however. Without sunlight to drive the 

process, convection must rely on residual ground warmth or currents in the 
atmosphere caused masses of air at different temperatures. At some time during a 
clear night, the ground cools by heat radiation to have a lower temperature than 
the air above it. Because cool air is denser than warm air, this result is more 
stable. The convective cells on clear nights are less spectacular. Through near-
pinholes, such as the human eye, this effect is seen as a slight spreading or 
bunching of light—stellar "twinkling." Through larger apertures, such as a 
telescope, the effect seldom appears as changes in brightness. In small telescopes, 
the image jumps around; in larger instruments the image is fixed but blurred. 

In the outside-focus star test image, such cells look like nothing so much as 
the dappling of sunlight on the bottom of a swimming pool. Driven by high 
altitude winds, they wash across the aperture. 

 

Fig. 2-3. Air Turbulence. A frozen moment of a turbulent image is shown in a focused pattern (left) 
and a defocused pattern (center). A delay of only a moment can show the example pattern at right. 
The focused image is magnified 5 times that of the defocused images. 

Figure 2-3 shows a snapshot calculation of such a roughened diffraction disk. 
Look particularly at the focused image. The diffraction pattern varies so rapidly 
that such appearances aren't often directly observable. At least you can follow the 
changes in the outside-focus pattern as the cells sweep rapidly across the front of 
the telescope. The most visible change in the focused pattern is the angle at which 
splinters of light appear. 

2.2.4     Tube Currents 
Yet another atmospheric effect concerns the telescope user. Small telescopes 

are often carried from a warm house to the cold outdoors. These days, they are 
frequently transported to dark-sky sites in a warm auto- 
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mobile for some distance before reassembly. Even permanently mounted 
observatory instruments are seldom maintained at precisely the outside 
temperature at which they will be used. As a consequence, portions of the 
mounting—and most notably the mirror itself—must cool. 

Glass has a high heat capacity and the accompanying low heat conductivity. 
In other words, glass optics have both a lot of heat to dump and the inclination to 
hold on to it a long time. Large, full-thickness mirrors take hours to cool. 

Air convection is responsible for a large fraction of the energy transport. In 
the presence of gravity, the air warmed by higher temperature surfaces in the 
tube is displaced by falling cool air. In an open-tubed reflector that is tilted at an 
angle, the result is a tube current, as seen in Fig. 2-4. Other cooling effects are 
visible in windowed reflectors and even refractors, but they may not take 
precisely this form. 

 
Fig. 2-4. Tube Current. A common tube current appearance is the squeezed or herniated lobe on 
one side of the disk, and a flattened look on the other. Magnification of the focused image has been 
increased 6 times. 

The heated air exits the telescope as it would a chimney. It generally hugs the 
upper side of the tube as it is ducted out. As light passes more quickly through 
the less-dense warm air, the wavefront there curls up like a page being turned. At 
certain angles, the in-focus image resembles the Moon setting over a quiet sea. 
After the telescope cools, these effects go away. 

2.2.5    Pinched or Deformed Optics 
Particularly common with overly-tight reflector cells or thin mirrors bending 

under their own weight is the aberration that has the appearance of Fig. 2-5. 
Details of the deformation will change the precise out-of-focus pattern. This 
deformation depends on which clip is tight, how many support points hold up 
the mirror, and whether the optics are supported on the edge or on the bottom.  It 
will change with different telescope elevations. 
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In focus, the particular deformation modeled here results in a three-sided 
spike pattern. 

2.2.6 Spherical Aberration 

If abrasive is placed between two disks of glass and they are rubbed 
together with the orientation and stroke length completely random, what 
can be expected? At the end of thousands of such rubbing motions, part 
of two spheres must result—one convex and the other concave. 

Thus, spheres (or more accurately, spherical bowls) are easy to make, 
at least compared with other three-dimensional surfaces. Unfortunately, 
spheres do not image properly. If a hemispherical reflector or a spherical 
lens is imagined, it is not difficult to see why. 

Let's say light rays are incident on such surfaces as in Fig. 2-6. As the 
impact point deviates from a center-on-center direct hit, the focus wanders 
from a single point. Clearly, this aberration is an ever-present danger. 

The mechanisms that evolved to correct this problem are fascinating 
because they point out the essential differences between refractive and re­
flective astronomical optics. They are almost two separate lines of devel­
opment. 

In the case of refractors, the spherical lens was retained and refined. 
In refractors, optical surfaces can be placed close together without getting 
in each other's way. More elaborate optical systems can be designed by 
invoking trade-offs between the curvature and separation of closely-spaced 
elements. The first optical designer to attack aberrations systematically was 
Joseph Fraunhofer. His masterpiece instrument, the great Dorpat achro­
matic refractor, was corrected not only for spherical and chromatic aber­
ration, but off-axis coma besides. This instrument became the pattern for 
telescopes of the 1800s in much the same manner as Hadley's telescope had 
been the fundamental design of the 1700s. Fraunhofer accomplished this 
task with spherical surfaces (with a small amount of retouching) and clever 
design. Variations of Fraunhofer's airspaced 2-element doublet refractors 
are sold today and still give outstanding images. 

Reflecting telescopes took another path. If you place a lens very near 
a mirror, light traverses it twice, which may or may not be useful. Rear-
surface mirror telescopes have been designed (indeed, one was suggested 
by Newton himself in Opticks, p. 105), but they are usually specialty in­
struments that are difficult to construct. All-spherical reflectors are not 
impossible, but they had to wait for sophisticated mixed lens/mirror sys­
tems (such as the Maksutov telescope). Makers of reflectors turned to 
aspherical optics quite early. 
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focused out-of-focus 

Fig. 2-5. Deformed Optics. The three-lobed pattern that results from too-
tight mirror clips or a thin mirror that is inadequately supported. Left: focused 
pattern. Right: one appearance of the slightly defocused disk. Focused pattern 
is expanded 2.5 times. 

Fig. 2-6. Spherical aberration in reflectors (a) and refractors (b). 

The aspherical surface for a one-mirror astronomical telescope is a 

parabola that is spun on its axis like a top. This three-dimensional surface 

is called a "paraboloid." Unfortunately, t h e paraboloidal surface does not 

happen randomly. The maker must take the more-or-less statistical process 

that forms a sphere and control it (with pressure, special strokes, or small 

tools) to deform the surface to a paraboloid. Two-mirror systems have been 

devised that demand everything from hyperboloids to oblate spheroids. 

b) 

α) 
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Aspherizing takes good bench testing and understanding of materials 
and methods. As might be suspected, some telescope makers are more 
conscientious with such operations than others. Pitch, which is used for 
polishing and shaping the surface, is one of the most cantankerous materials 
used in any process. Fabrication can go badly when pitch is used without 
respect. 

In my experience of testing approximately 100 nominal paraboloids, 
about half of the commercial mirrors have been marginally undercorrected. 
They have a surface somewhere between a sphere and paraboloid, barely 
within tolerance or slightly outside of it. A quarter of the mirrors have 
been severely undercorrected, and about a quarter were figured within ac­
ceptable limits. Most of the undercorrected mirrors were of the short-focus 
variety, between f/4 and f/6. Nearly all of the f/6 to f/8 paraboloids were 
adequately figured. I have seen few commercial Newtonian mirrors that 
were overcorrected—although many amateur-made mirrors seem to be. 

For experienced opticians, paraboloidal mirrors are not all that difficult 
to make. Because Newtonian telescope mirrors tend to be undercorrected, 
the makers must be spending as little time as possible on each mirror. 
This practice can perhaps be explained (if not justified) by the current low 
prices of consumer mirrors. The makers are attempting to figure mirrors to 
the near edge of the tolerance, minimizing time and costs. The inevitable 
statistical spread means that many such mirrors will be unacceptable. 

Undercorrection is shown in Fig. 2-7. Inside focus, much of the light is 
bunched up into the outside ring. Beyond focus, it has been pushed to a 
fuzzy patch in the center or to the outside of the secondary shadow. This 
is the signature of undercorrection. Memorize these patterns. If you have 
an opportunity to test Newtonians, you will see undercorrection repeatedly, 
and it is common enough in other types of telescopes. Spherical aberration 
is perhaps the only unadulterated glass error that you will ever see. The 
rest are usually mixed together. 

Some people may misread the overall tone of these comments as a con­
demnation of Newtonian reflectors. Nothing of the sort is intended. The 
two best telescopes I have ever seen—and that includes refractors—have 
been exquisite Newtonians. The crisp star images of a well-made and well-
aligned paraboloid are a beautiful sight. It is a shame that more of them 
do not perform as well as they can. 

2.2.7 Rough Surfaces 

Another common aberration afflicting telescopes is surface roughness. 
It results from using rapid polishing materials and maintaining insuffic-
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Fig. 2-7. Spherical Aberration. Under correction appearing in a) unobstructed apertures, and  
b) 33% obstructed apertures. Inside focus (toward left): much of the light is collected in a strong 
outer ring, leaving a dim center. Middle: The focused image steadily worsens as aberration 
increases. Outside focus (toward right): the outer side of the image fades away and the missing 
light is found near the center. (Focused-image magnification is 4 times that of the defocused 
frames.) 
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ient contact between the pitch polishing lap and the optical surface being worked. 
The polishing operation is a strange and delicate process. Transient conditions on 
the surface of the lap can modify the contact between the tool and the optics. If 
the surface is polished by hand, one can feel the tool grab and kick almost like a 
living thing. Manual workers know immediately that something is wrong, and 
they can rewet the lap with polishing compound and press until contact is once 
again established. 

As a simple matter of economics, optics aren't worked much by hand. A $300 
telescope mirror probably requires between 2 and 4 hours of the optician's time. 
Such work must be prosecuted rapidly with machines or the cost of telescope 
mirrors would quickly escalate out of the reach of consumers. When a lap begins 
to seize, the machine neither notices nor cares. It has power enough to roll over 
the lap's squeaking complaints. If the optician has not worked out a standing 
procedure to avoid such difficulties, one possible consequence could be rough 
surfaces. 

 
Fig. 2-8. Roughness. A small amount of surface roughness. Left: the focused image. Middle: 
defocused rough surface image. Right: a smooth defocused image for comparison. 

Figure 2-8 is an example of the behavior of light in the diffraction pattern 
from an excessively rough surface. Of course, only one such appearance is 
illustrated. The pattern depends on such details as the scale of the roughness as 
well as its graininess and periodicity. These patterns, if the page is placed at 
sufficient distance, exhibit a weak spiky effect. These spikes can be distinguished 
from the roughness induced in the atmosphere by their motionless aspect. 
Atmospheric turbulence shifts and changes. As a result, spikes shoot out from one 
side of the image and then another. Rough surfaces, however, are coldly rigid. 
Nevertheless, the sky isn't usually steady enough to test for this problem on an 
actual star; most often this is an error best left to an earthbound artificial source. 
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2.2.8     Zonal Aberrations 
Part of what makes a successful optical surface is the effect of statistical 

averaging. One of the most paradoxical features of optical work is that the best 
surfaces are the result of superficially sloppy practice. Behind the variations, 
however, are carefully delineated boundaries. 

Machines are less random. The operator must make adjustments to add a 
pseudo-random component to the stroke. If insufficient artificial variations are 
imposed on the machine, it will tend to dig circular furrows or wavy 
deformations, called zonal defects, in the optical surface. Zones can also be the 
result of employing small polishers on a larger optical surface. Use of small 
polishers without sufficient blending can cause zones in both handmade and 
machine-fabricated optics. See Fig. 2-9. 

inside focus outside focus normal 

 
Fig. 2-9. Zonal Defect. Zonal aberration on an unobstructed aperture caused by a trench at 60% of 
the radius of the disk. Far inside of focus, the zone appears as a bright ring on the uniform disk, and 
outside it becomes a dark ring. On the right is an unaberrated pattern. 

Zonal defects are common in small optics at the center. They appear as an 
indentation or a bump (the photograph in Fig. A-3 of Appendix A is an 
example). Zones at the center are less harmful than zones appearing at other 
radii. In obstructed reflectors they are confined largely to the shadow of the 
diagonal and rendered harmless. Even if they show, defects at the center occupy 
only a small part of the surface area. 

2.2.9    Turned Edges 
Turned-down edge is a defect where the edge does not end abruptly but curls 

over gradually. This special case of zonal aberration results in a surprisingly 
large amount of damage to the image because the edge of the aperture has a large 
fraction of the total surface area. It deflects more light. 

Turned edge comes either from polishing pitch that is too soft or from 
applying incorrect pressure when the optical surface is extended over the 
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edge of the polishing tool (Texereau 1984). It is extremely difficult to remove 
once generated, and the fear of it causes telescope makers to over-compensate 
with an extremely hard grade of pitch. Some add adulterants that change the 
pitch's readiness to flow. Stiff or waxy pitch often worsens the problems with 
rough surfaces, though, so the net effect is a trade between two noxious 
aberrations. 

In an otherwise perfect reflector, turned-down edge appears as a softening of 
the ring structure inside focus and a corresponding hardening of the ring structure 
outside of focus. To avoid confusion, look for this effect through a strongly 
colored filter. Figure 2-10 shows two 25% apertures, one normal and the other 
with a turned edge. The light misdirected from a turned-down edge appears as a 
hazy glow in the vicinity of the image on the inside of focus (remove the filter if 
you look for this halo). 

On both sides of focus, a narrow turned-down edge displays a fairly flat 
distribution of light in the disk. 

 
Fig. 2-10. Turned-Down Edge. Turned edge in a 25% obstructed aperture. A normal 25% aperture 
appears at the left. The inside-focus disk shows loss of contrast and a diffuse glow surrounding it. The 
outside-focus disk seems less affected in terms of light distribution, but the contrast is increased in the 
rings. 

2.2.10     Astigmatism 
Pure astigmatism can occur even in perfect telescopes (particularly refractors) 

if the system is not aligned properly. The cure is simple, and the aberration 
disappears quickly upon the telescope's collimation. It also occurs in Newtonian 
telescopes that have curved secondary mirrors. Because of the 45° tilt of the 
supposedly flat mirror, a bulging or concave diagonal will be expressed as 
astigmatism in the image. 

Astigmatism in the glass itself is caused by three fabrication errors. It can 
result from pressing the disk against a cylindrical surface—for example, the rear 
surface of the disk may not be flat. Another cause is too rapid cooling of the glass 
disk when it was poured, freezing unrelieved stresses 
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into the disk. This error is scarcely ever seen in deliberately made optical disks, 
but is common enough in portholes or other undocumented glass. And last, 
failing to rotate the optical disk with respect to the tool grinds a cylinder into the 
disk directly. 

In all cases, out-of-focus astigmatic images will show two oval patterns at 90° 
to one another (see Fig. 2-11). If astigmatism is severe, certain focus positions 
will give stellar images that look like straight lines. 

 
Fig. 2-11. Astigmatism. Appearance of astigmatism immediately on either side of focus. Middle: at 
best focus, the pattern is a cross. Out of focus, the profile is stretched into an oval, with the direction 
of stretch changing a quarter turn on opposite sides of focus. 

At best focus, astigmatism will show the indicated crossed pattern. Small 
amounts display a thickening of the first diffraction ring along the cross 
directions. 

2.3    Concluding Remarks 

This chapter is meant only as a brief tour of the enormous landscape that can 
be found in the star test. Do not confuse this nodding acquaintance with real 
expertise. The star test's vastness and complexity are astounding. You will 
continue learning new features of the star test many years into the future. 

The size of the preceding sections is one measure of the importance given to 
them as optical problems. If one topic can be recommended for study, it is 
spherical aberration—i.e., simple correction error. Become an expert in its 
detection. You will see this error again and again. 



Chapter 3 

Telescopes Are Filters 

The telescope is a device that reproduces an image of reality. It does not 
write on paper like a copy machine, but its images are just as unreal. It creates 
its reproduction on a tiny image plane only a few centimeters from the tip of 
the observer's nose. The scrutiny is done using a powerful magnifying lens 
called an eyepiece. Only through the multiplicity of imaged values (location, 
color, brightness) and the selective visual processing power of the human brain 
does this reproduction get interpreted as reality. 

Similarly, the visual image projected onto the retina is only representative 
of reality. Those with keen vision are able to derive more information about 
the external world than people with weak vision, but each individual tends to 
give equal value to that perception, regardless of its absolute quality. We tend 
to ignore errors. 

Before going farther, look at Fig. 3-1. Think of a filter as a process that 
degrades information contained in an image or signal. Filters are not only 
objects such as the colored disks of glass you might attach to the eyepiece. 
They are anything which removes information from the image, even relatively 
subtle factors such as the limitation on aperture and the wavelength of light 
viewed. This concept, which I call the "wobbly stack," represents a partial list 
of the filters between the observer of an image and reality. Some of the 
nitrations depicted are not independent. For example, eyepiece aberrations 
may, by good fortune or design, partially cancel the main instrument's 
aberrations. 

The effects of each of these filters can be lessened, but not all may be 
removed. For example, one can avoid atmospheric turbulence by going into 
space. One can lessen aberration errors by building near-perfect optics. One 
can even avoid the mushy errors of the eye-brain system by using the more 
predictable filtration of photography. So why wouldn't it be possible to put an 
absolutely perfect image of Jupiter onto a sheet of 

35 
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Reality 

 
Perception 

Fig. 3-1. A diagram depicting some of the aberrations, obstructions, misalignments and processing 
errors that can degrade an image: the "wobbly stack." 
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photographic film? 
The most important form of filtration cannot be removed or diminished—a 

filtering caused by the aperture, or the finite extent of the window through 
which the telescope looks. Let's imagine that we have some sort of super-film 
that records everything that is projected on it. Further imagine that the 
instrument has absolutely perfect optics. We suppose that if a photograph of 
Jupiter taken with such a system is inspected with a microscope, we have a 
perfect image of everything at the distance of Jupiter—volcanoes on Io, tiny ice 
crystals in the atmosphere, the smallest cloud-belt whorls, etc. If we can do it 
for a full-sized telescope, we can do it for a little one. It might even be easier to 
make perfect small optics than large ones. If the optics are tiny, what then? 

We have reached a fundamental limit. Small lenses don't image as well as 
large ones. The sharpness of the image of every optical system is limited by the 
presence of the aperture. If we squeeze a representation of the universe through 
a tiny hole, we should expect this image to be a bit scuffed by the passage. 
Passage of light through larger apertures results in less damage. 

3.1    Perceptions of Reality 

Figure 3-1 shows many limitations that we can do nothing about. Although 
other receptors are often used, most people interpret eyeball vision as the best 
representation of reality. Thus, we all send the signal through an unavoidable 
filtration system that happens to be attached to our heads. Some might argue 
that this filtering is always present and can be viewed as a sort of baseline. 
True, we are probably accustomed to our own vision, but we are most familiar 
with its performance under bright lights, using two eyes. In a telescope, with 
low illumination and monocular vision, many of the errors that would 
otherwise be incidental are worsened until they cause significant and 
unexpected information loss. 

The only things that can be done about such unavoidable errors is to be 
aware of them and use strategies to lessen their effects. For example, the most 
commonly used corrective measure for the awkward distribution of low-light 
sensors on the retina is not to look directly at dim objects, i.e., to use averted 
vision. The unbalance caused by monocular viewing can be eliminated with 
binoculars. 

The filters covered in this book concentrate on the center of the stack, from 
the atmosphere down to the image inspected by the eyepiece. This is not to 
say that these are the worst sources of error, but they are filters most 
associated with the telescope, its environment, and its use. They are the forms 
of filtering that we are most able to affect by corrective actions. 
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Eyepieces are neglected here. Although changing the eyepiece changes the 
optical system, it is not usually the worst source of optical difficulty. If a high 
magnification is used, the errors of the primary optics will dominate unless the 
eyepiece is entirely defective or it is used for the unusually steep light cone of a 
low focal ratio telescope. Also, a poor eyepiece can be identified by trying it in 
several instruments. 

Aberrations that may seem less important are covered because they are 
generally caused by construction details peculiar to the particular instrument or 
repeated poor habits of use. For example, if you store your telescope in a hot 
shed and only use it in the early evening, you will be plagued by tube currents. 
Telescopes that are misaligned seldom become better aligned the next time they 
are used. Optics don't heal by themselves. 

Clearly, the most desirable image would be a one-to-one mapping of points 
on the real object to points on the image. Telescopes already violate this 
principle by compressing much of the three-dimensional universe to a two-
dimensional plane or slightly curved surface. Only for nearby objects are the 
images stretched out into a three-dimensional image space. Thus, a gas cloud 
500 light-years away is imaged on top of a giant star visible 200 light-years 
beyond it. People are accustomed to this effect and tend to ignore it. Only where 
we have independent knowledge of the three-dimensional placement of the 
objects does this compression becomes objectionable. Many people are familiar 
with a similar perspective compression effect when they use binoculars at a 
sports event. If they are far enough from the action, the field seems flattened to a 
playing area a few steps deep. 

For most purposes, the filtration caused by squeezing the image onto a sheet 
is not harmful. In fact, this and other forms of filtering can be quite useful. 
Astronomical telescopes are not troubled with the vanishingly small depth of 
field so bothersome in microscopy, where only part of the object is clear at any 
one focus. 

Another positive use of filters is the way emission nebulae pop out from 
skyglow using narrow-band nebular filters. Although such filters diminish the 
interesting signal slightly, they profoundly reduce the superimposed noise of 
skyglow. The observer is happy to take the somewhat weaker true image as a 
trade for eliminating artificial light. 

3.2     A Comparison to Audio 

Because generalized filtering is a difficult concept at first, let's use an 
example where the filtration ideas appear in our common vocabulary—the 
commercial sound system (see comparisons in Table 3-1). Because electronics 
are a more recent invention than telescopes, and the terminology for audio was 
invented by engineers brought up on signal-processing math- 
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ematics, many modern words used for sound systems tend to have filtering 
concepts built right in. Many people are familiar with audio hardware or have 
a superficial understanding of the words. Comparisons, or at least some 
strained analogies, can be made to similar patterns in telescope filtration. In 
the audio descriptions, a frequency of 20,000 cycles/second or 20,000 Hz 
equals 20 kilohertz, abbreviated as "kHz." 

Table 3-1 
Generalized telescope and associated equipment 

filtrations that behave in an analogous manner to another 
reproduction device, the high-fidelity sound system. 

FILTRATION FILTRATION 
(telescope/eye/camera) (sound system) 
aperture diameter size of speakers 
colored filters equalizer filters 
image processing signal processing 
scattered light audio noise 
spatial response frequency response 

3.2.1    Aperture Diameter/Size of Speakers 

A typical stereo system has a cascaded set of sound reproduction devices 
called speakers, more technically named transducers. They convert electrical 
energy to the air compressional waves of sound. A typical stereo has 
subdivided speakers into at least two ranges, "woofers" and "tweeters." Low-
frequency woofers are quite large, while high-frequency tweeters tend to be 
very tiny. 

Low-frequency speakers, having to cycle a large quantity of air, occa-
sionally move large distances and have enormous diameters. High-frequency 
speakers cannot be visually perceived to move at all and seem to work well in 
small sizes. Most people figure the reason the frequency range is broken up 
into multiple transducers is because no single speaker can cover the range, 
which is mostly true. However, we can easily imagine, if not build, a single 
speaker that would reproduce the entire frequency range with equal facility. 
Why would we still expect speakers to be divided? 

Flat speakers (and optics) transfer energy in an angular range according to 
how many wavelengths fit across the aperture. The speed of sound is about 
330 meters/second, or about a mile every 5 seconds. A sound at 880 Hz, or 
880 cycles/second, would have a wavelength of 330/880, or 3/8 meter. If we 
had a speaker of this size, about 15 inches, it would put out most of the 880 
Hz energy in a 120° cone. In other words, twice the 60° angle of an equilateral 
triangle, 1 wavelength across the speaker at the base, 1 wavelength on each 
side. This size is effective for stereo imaging, because sound can spread 
widely into a room. So we're done designing a speaker, right? 
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Consider our imaginary, one-size-fits-all single speaker for a moment. It 
works fine at 880 Hz, but we can hear to frequencies about 20 times higher. to 
around f 7,600 Hz. Young people might hear higher pitched sounds, older ones 
lower. Now the wavelength at 17.6 kHz is 18.8 mm (about 3/4 inch). The 
emergent cone of energy from this same speaker is twice the narrow angle in a 
long, skinny triangle 20 wavelengths at the base and 1 wavelength high—less 
than 6°. At high frequencies, the angular spread of our single speaker is so 
narrow that we need to carefully aim such a source to hear it directly. Even 
worse, the mix of frequencies depends on whether we are directly in front of the 
speaker or sitting to the side, because each frequency has its own cone. The 
"sweet spot" of best stereo effect would be hard to find. High-pitched music 
from such a speaker may only be detectable in one ear at a time and may vary 
with motion of the head. Sound engineers still design multi-speaker systems of 
different sizes because no single speaker would emit sound into the optimum 
angle at all frequencies. They also design speakers in other shapes for this 
reason. Flat is sometimes not the best form for a speaker. 

What is annoying in a sound system is desirable in a telescope, however. A 
typical telescopic aperture is 200 mm, or 360,000 wavelengths across. We still 
use the crude estimate of the angle of the energy cone similar to the speaker 
above—twice the narrow angle of a skinny triangle one wavelength high and 
3.6 x 105 wavelengths across the base. This cone is less than 1.2 arcseconds 
across. Thus, most of the energy of a star detected by a 200-mm visual telescope 
can be found in an angle confined to less than 1.2 arcseconds. 

One can also see from these resolution arguments why the location of a 
subwoofer (a very low frequency speaker) makes no difference. At a typical 
frequency of a subwoofer—say, 33 Hz—the wavelength is 330/33, or 10 meters. 
Any subwoofer smaller than a railroad car cannot even pretend to be able to 
direct the sound in any particular direction. Subwoofer location matters little 
because it radiates sound in all directions. The listener also isn't capable of 
hearing it in a unique location; the sound has such low frequency that normal 
two-eared perception is subverted by acoustic transmission directly through the 
head.  

Similarly, radio telescopes have to be huge to offer any resolution. A 20-cm 
(8-inch) telescope has an aperture of only about one wavelength of the 21-cm 
line often observed by radio astronomers. If one were foolish enough to build a 
single-element, 8-inch radio telescope, a point image of 21-cm radiation would 
occupy a broad, fuzzy 120° angle. 
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3.2.2    Colored Filters/Equalizer Filters 

Equalizer filters are often added to sound systems to compensate for the 
room damping or reverberation. The rough equivalent in a telescope is to add 
color filters to the optical system. The color filters perform a similar shift or 
emphasis in the frequency spectrum. 

It is no whim or accident that the sonic signature of an individual room is 
called the room's coloration. Sound spaces with unusually high amounts of 
upholstery or curtain absorption are called "warm," meaning that they absorb 
high frequencies much more strongly than low ones. Red and orange colors are 
also called "warm." The cure for a warm sonic space is to boost high 
frequencies. Similarly, when we use a blue filter on Mars, we can see high dust 
clouds more easily because they reflect more of the blue sunlight than the 
ruddy Martian surface. 

The brain itself acts as a compensating filter for the external world. Since 
the time of Edison, listeners have repeatedly declared their contemporary 
audio technology to be perfect, even when it was scratchy and indistinct. Our 
light perceptions are equally questionable. The brain will automatically adjust 
nearly any color balance it sees to the color balance it experiences beneath the 
Sun. 

A good example is illumination under artificial lighting. Look into a 
fluorescent-lit room from the outdoors. Your color balance is held fixed by the 
brighter natural sunlight, so the room light you see inside is greenish. Mercury 
vapor lighting is composed (mostly) of two pure colors, a green line and a 
blue-violet one. Even under these extraordinary conditions, the eye manages to 
fool us most of the time. Only when the eye is confronted with just one color 
does it give up. Even then, I suspect if you gave the eye-brain system enough 
time, it would eventually adjust to perceive any single color as a kind of 
washed-out gray. 

3.2.3    Image Processing/Signal Processing 

So many techniques to process audio signals and images exist that they all 
cannot be included here. Let's look at an example—oversampling. 

Sixteen-bit numbers are imprinted on a Compact Disc (CD) at the rate of 
44.1 kHz, and they are read off the medium at the same rate. The values are 
then delivered to a digital-to-analog converter (DAC), which takes the 
numbers and "undoes" them back into a voltage that one hopes is a reasonable 
simulation of the original recorded signal. 

One would think that 44.1 kHz would be more than fast enough to repro-
duce sound of less than half that frequency, but it turns out that this is only 
barely sufficient. If the original signal is 11 kHz, a sampling rate of 44 kHz 
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Fig. 3-2. Sampling of digital audio signals. 

yields only four values per wave (see Fig. 3-2a). The DAC is attempting to 
produce the dashed stair-step pattern, which does not simulate the original 
sinusoidal tone very well. The stair-step is rich in higher frequencies, called 
harmonics, of 22 kHz and higher. More exotic combinations of waveforms 
could actually create artifacts that would spill into audible frequencies. 

One could use electronic analog filters to reject DAC frequencies 20 kHz 
and higher, but it takes extremely sophisticated (i.e., expensive) electronics to 
produce a precipitous cutoff beyond a certain frequency. Inexpensive analog 
lowpass filters attenuate sound at a rate of, for example, 12 dB/octave, or a 
factor of 16 with each doubling of frequency. In other words, a perfect amplifier 
feeding one of these lowpass filters with an intensity of 1 at 11 kHz has an 
intensity of 1/16 at 22 kHz and  1/256 at 44 kHz. Unfortunately, some of the 
attenuation leaks into audible frequencies. The response curve is unacceptable 
for high-fidelity sound reproduction. 

The solution often used is to digitally "oversample" the signal. A DAC that 
operates at 88.2 kHz is used, and the signal is sampled at twice the usual rate. 
Using a digital filter with an interpolation algorithm (algorithm is a fancy word 
for recipe), one can achieve something like the dotted line of Fig. 3-2b. The 
analog lowpass smoothing can then be readily applied with a cutoff frequency of 
44 kHz instead of the more objectionable 22 kHz. Of course, actual CD players 
probably use much more sophisticated filters and algorithms than this one. This 
scheme has been presented only to give you a feel for the processing (Strong 
and Plitnick 1992, p. 440). 

The simple act of choosing a higher-powered eyepiece is itself a form of 
oversampling (see Fig. 3-3). Here, you are giving up the outer portions of 
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a) single-sampled b) double-sampled 

 
Fig. 3-3. Using higher magnification is a form of oversampling. Here, the object seen at higher power 
is spread over four times the area of the retina, allowing more receptors to participate in 
averaging the image. 

the image area in favor of expanding the signal over more retinal receptors. 
Areas of the image can be identified that have a fairly constant signal strength 
and coloration, but if they are smaller than a retinal receptor, that intensity will 
be mixed together with a nearby area. 

The retina, like any other light sensor, is noisy. One mechanism the visual 
system uses to suppress noise is to consider receptors in batches. A detail that 
shows on only one receptor may be interpreted as noise and ignored unless it is 
very bright or contrasty. Going to higher magnification allows you to expand 
small areas until they cover more individual receptors. The average over many 
noisy detectors is a less noisy number, so lower contrast details can be seen. 
This procedure works on low contrast details even when the magnification 
expands the blurring of the telescope beyond the best resolution of the eye, 
which makes it a true form of oversampling. The eye has a maximum 
resolution of about 1 arcminute, but the image continues to improve until 
magnification drives the radius of the Airy disk beyond 4 to 8 arcminutes. 

3.2.4    Scattered Light/Audio Noise 

Every sound system is troubled by noise. In some cases, this noise can be 
objectionable (as in scratchy old phonograph disks) and in other cases the 
noise can be imperceptible (as in modern digital systems). The absolute level 
of the noise is less important than its signal-to-noise ratio, or SNR. When the 
music is soft, a constant low level of noise can become unacceptable because 
it now sounds relatively strong compared with the interesting signal. However, 
the same level of noise goes undetected when the music is loud. 
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One obtains a better appreciation of the relative effects of noise by 
compressing the signal-to-noise ratio logarithmically to the decibel scale, 

SNR=10 1og10(Is/In), (3.1) 

where Is is the power of the signal and In is the power of the noise. For the 
strongest signals in a typical CD, the digital SNR is somewhere above 96 dB. 
For a high quality analog cassette tape, a similar number might be around 55 dB 
(Strong and Plitnick 1992, p. 441). Of course, the lowering of quality caused by 
passage through the rest of the sound reproduction system lowers these SNRs a 
good deal. Noise begins to become objectionable when it is 20 dB below the 
interesting signal and offensive when it is 10 dB below what one is trying to 
perceive. When SNR reaches 0 dB, or conditions where noise and signal have 
equal intensities, people have a difficult time recognizing spoken single words, 
only catching about 70% of them (Kinsler et al. 1982, p. 284). 

The analogue to noise in optical systems is scattered light. Say that the 
surfaces of your optics are dirty, or they are rough on the wavelength scale. 
Some light diffracts from the tiny irregularities and is scattered beyond the 
image of the object. If you are trying to observe a very dim object right next to a 
bright object, the smearing of the light, even though it is a very tiny fraction of 
the bright object's light, can be strong enough to render the dim object 
unobservable. The "noise floor" has risen enough to be objectionable. Contrast 
is appreciably reduced. 

We can calculate the scattering from a single round piece of dust, 1/1,000 of 
the diameter of the aperture across (for a 200-mm telescope, the speck of dust 
would be a 0.2 mm disk). One millionth of the energy incident on the aperture 
would hit the rear side of the speck and be absorbed or reflected. However, we 
would see a fairly normal Airy disk that has two-millionths of the energy 
missing (van de Hulst 1981). The other millionth part of the energy has been 
scattered throughout the field of view. If we assume that we are looking at a 
large extended object and that none of the scattered light has been lost outside 
the region of interest, then the signal-to-noise ratio is as low as 10 
log10(l,000,000) = 60 dB, still far below the noise level of good magnetic tape. 
At 1,000 specks, we would find that our SNR could be well on the way to 
becoming noticeable at 30 dB. Thirty decibels is approximately 7.5 magnitudes. 
Thus, if we were looking at a first magnitude star, we would see the scattered 
light in a fuzzy glow with a total brightness of 8.5 magnitude. 

Scattered light only damages the image in specialized observing situations. 
Noise that is 24 dB down is only about as bright as the second ring of a perfect 
diffraction pattern. Such light would only be troubling if 
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it covered something dim, a situation that is seldom the case in dark-field 
observation. Scattering is a worse problem in solar and lunar observation, or in 
the perception of very low contrast detail on planets. 

3.2.5    Spatial Frequency/Audio Frequency Responses 

A good sound system is supposed to perform sound reproduction between the 
frequencies of 20 and 20,000 Hz (20 kHz). A frequency of 20 Hz is a rumble 
you almost feel instead of hear; 20,000 Hz is a fingernails-on-blackboard 
squeak. Outside these limits, it was once thought, humans do not hear well 
enough to make reproducing tones in recorded music worthwhile. More 
recently, audiologists have discovered that part of the information required to 
make what we hear seem real is contained somewhat outside these limits. 
Nevertheless, high fidelity sound reproduction is conventionally contained 
between 20 Hz and 20 kHz. Tones lower in frequency than 20 Hz are called 
infrasound, and tones higher in frequency than 20 kHz are called ultrasound. 
The analogy to "infrared" and "ultraviolet" is obvious. Think about what the 
20-20,000 Hz limits mean. As long as a tone has a frequency between these 
limits, the audio electronics will reproduce it without too much loss or unusual 
gain. Once frequencies go into the infrasound or ultrasound range, the 
electronics are allowed to fail badly and the sound is degraded or vanishes. In 
other words, even if a higher frequency tone were put in the front end of the 
audio electronics, little or nothing is reproduced at the speaker end. 

A similar effect can be seen in telescopes, but in optical systems the most 
interesting effect does not take place in the domain of optical frequencies, or 
"colors." It occurs for angle. 
When a telescope is pointed at a white picket fence not too far distant, the 
gaps can be viewed crisply against a darker background. If, instead, you tape a 
small piece of paper with alternating white and dark bars on the same fence 
and look at it through the telescope, you are less likely to see the bars 
reproduced well. At some fine scale determined by moving the telescope 
closer or farther away, you will see the bars dissolve into a gray blur. The 
instrument is no longer reproducing the reality that may be verified by moving 
closer to the object. You know that the telescope is looking at bars, but it is no 
longer transmitting them as distinct stripes. Here, the effect is very close to the 
inability of audio electronics to reproduce too high a frequency, only in this 
case a portion of the object cycled between dark and light and back to dark 
again as different angles were considered. What is the analogy to frequency 
here? In the case of an audio tone, the standard units of frequency are 
cycles/second or hertz (named after 19th-century physicist Heinrich Hertz). In 
the case of astronomical images, 
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the units are cycles/arcsecond. The resemblance to frequency is so unmistakable 
that the quantity used to describe the transmission of detail in an image is called 
spatial frequency. Spatial frequency has units of cycles/angle, but it is 
sometimes stated in cycles/distance in the focal plane-something like "200 line-
pairs/mm" or just "lines/mm." It usually appears without the more precise "in 
the focal plane" trailer. 

One might wonder if a low frequency cutoff exists in optical systems 
analogous to the 20 Hz cutoff of audio systems. You might think that none 
exists because dark and white bars are easier to see at low frequency. An 
effective cutoff is given by the limitations of the field, however. Once fewer 
than one bar shows in the lowest magnification eyepiece, the bars cannot really 
be said to resolve. Put another way, the illumination variation probably cannot 
be distinguished from the inherent vignetting of the system. A visual telescope 
of focal ratio f/8 has a maximum spatial frequency of 226 lines/mm at the focal 
plane. If that focal plane has a width of 25 mm inside the eyepiece, the lowest 
spatial frequency is certainly greater than 1 line/50 mm, or 0.02 lines/mm. The 
ratio of these two numbers is 11,300. Thus, the telescope has at least the 3 
orders-of-magnitude bandwidth of the typical 20-20,000 Hz audio system. 

3.3     The Modulation Transfer Function (MTF) 

Many of the audio-to-visual comparisons above are interesting but have no 
practical application. Spatial frequency response of optics is a core issue, 
however, and there is a very important reason it is used. This response is the 
most objective measure of the quality of an optical system. 

Spatial frequency response is generally written using the filtering concept of 
a transfer function. If the target displays a sinusoidal modulation-changing 
gradually from bright to dark—and we view the optical system as a black box 
filter, then it exits with a lesser variation. Perhaps the exit signal varies only 
from light gray to dark gray. 

The spatial frequency target is not a light and dark bar pattern as in the 
picket fence example above but a smoothly varying pattern such as that shown 
in Fig. 3-4a. Strictly, such a pattern should extend infinitely to either side, but 
practical use limits it to a few bars. The common 3- or 4-bar resolution chart is 
not a valid target field in the sense of either being infinite or sinusoidal, but it is 
such an easy target to use that it commonly serves to estimate optical quality 
anyway. One other requirement is that the illumination of the bar pattern is 
completely incoherent, usually a very easy requirement to fill. 

If C stands for contrast and ν is the spatial frequency, the way we will 
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define the modulation transfer function (MTF) is 

Cafter(v) = MTF(v) Cbefore(v),                                         (3.2) 

where MTF(v) is always less than 1. 
Let's look at this simple equation and see what it means. If one has a target 

pattern with a certain value of contrast, the transfer function of the optical 
system always acts on that contrast to lessen it. Readers familiar with filtering 
concepts know that, in general, the transfer function can change the phase of 
the signal (suggesting that the most general transfer function is complex). 
Here, we will be concerned only with its amplitude, the modulation transfer 
function. The contrast (both before and after) is measured from the intensity 
levels at the darkest place on a dark bar and the brightest location on the light 
bar. 
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where the intensities are measured as in Fig. 3-4. Note that if the "before" 
pattern has a dark intensity of zero, the modulation transfer function becomes 
the image contrast itself (Hecht 1987, p. 507). 

The MTF is all-encompassing and powerful. Even optical difficulties not 
originating in wavefront errors but in obstruction and non-uniform trans-
mission find a way of being expressed in the modulation transfer function. 

What form does it take? One would think that in perfect optical systems, the 
value of the MTF would be 1 for all spatial frequencies. No such optical 
system exists although a large planar mirror comes very close. Consulting Fig. 
3-1 depicting the "wobbly stack" of filters, we can ask which filters are active 
even under ideal conditions. Clearly the atmosphere can be neglected—
assume that the telescope is under perfect skies, or in space. The eye and its 
processing errors also will be ignored. Assume alignment and cleanliness are 
perfect and that the vignetting can be ignored. This process can be continued 
until the stack is made as short as possible. 

What is left? Remember, even a perfect optical system has these two filters: 
1) the wave nature of the light used to make the image, and 2) the limited 
aperture. This irreducible minimum is enough to force the MTF to a value less 
than unity and determine where it goes to zero. The perfect circular aperture's 
MTF is depicted in Fig. 3-5. 

Admittedly, this curve doesn't much resemble the flat curve of the typical 
audio system, because it is plotted on a linear scale and extends somewhat 
beyond the spatial frequency bandwidth. The logarithmic decibel scale used 
for music tends to compress the spectrum to a wide, flat-topped 
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Fig. 3-4. Target intensity of modulated brightness: a) before filtering, b) after filtering. Note: the 
energy of the image is still the same, but in b) it is less modulated. The target is not actually 
corrugated—this is just a way of indicating surface brightness.    

appearance (0.5 = —3 dB, 0.25 = —6 dB, etc.). If this plot were of an audio system, the 
bottom axis would go from 0 to well beyond 20,000 Hz. In fact, easily audible sounds 
would occupy the lowest 1/10 of the spectrum. Similarly, much interesting detail in sky 
objects is at low spatial frequencies where the transfer function is high. This plot 
emphasizes the highest frequencies where the transfer is likeliest to fall down. 

         
                                                                                                                           (3.4) 
 
 The maximum spatial frequency (on the far right, 1.0 on the chart) is with θmin 

representing a separation angle slightly narrower than the 1.22λ/D angle associated with the 
radius of the diffraction disk, also known as the Rayleigh resolution criterion. Here, a bar 
separation equal to the radius of the diffraction disk would occur at 1/1.22 = 0.82 of the 
maximum spatial frequency (marked with bar). 
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Fraction of maximum spatial frequency 

Fig. 3-5. The best-case unobstructed circular MTF. Incoherent lighting of the target is assumed. 

If we wish to use the notation that is more associated with cameras, the maximum 
spatial frequency at the focal plane (where F is the focal ratio) 
is 

                                         ]./[1'max lenghtcycles
F

S
λ

=                        (3.5) 

For example, if the aperture has a diameter of 200 mm and a focal length of 
1200 mm and the wavelength considered is 550 x 10-6 mm, then S'max is 303 
cycles/mm or lines/mm. Smax in angle notation for a 200 mm aperture would be 
364,000 cycles/radian or 1.76 cycles/arcsecond. 

3.4   The MTF in Use 

Astronomy authors claim that an aperture obstructed by about 30% is about 
as bad as an unobstructed aperture with 1/4 wavelength of spherical aberration. 
How do they know this? Seemingly, they are comparing two widely different 
phenomena. Are the images equally degraded? 

Everyone who has experience with evaluating images knows that these 
writers couldn't have derived that 30% number from experience. Differences 
between optical images are subtle, and this number is too precise. There are 
many ways to compute this quantity, such as specifying the amount of energy 
in the central disk. For our purpose here, we calculate the energies contained 
inside the diffraction spot of an unobstructed aperture with 1/4 wavelength of 
spherical aberration and several obstructed apertures that are otherwise 
perfect. We choose the obstruction that most closely matches the 
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energy loss of spherical aberration. The answer is an aperture about 32% 
obstructed.1 

However, we must examine the frequency responses of these two situations 
to see where the blanket statement of equivalence breaks down. The 
corresponding MTFs are plotted in Fig. 3-6. We see that they are roughly the 
same for spatial frequencies about half of the Rayleigh criterion. For 200-mm 
telescopes, these two optical situations show periodic planetary detail having 
spacings of roughly 1 to 2 arcseconds equally well. 

The response at higher and lower spatial frequencies are different, however. 
At the high end, the obstructed aperture delivers better contrast than 1/4 
wavelength of spherical aberration. Surprisingly, it even performs better than a 
perfect aperture. 

 
Fraction of maximum spatial frequency 

Fig.  3-6.  Comparing the nitration of simple spherical aberration and central obstruction. 

At the low end, the obstructed aperture has a higher MTF for spatial 
frequencies until bar separations are more than eight times the Rayleigh 
criterion. For a 200-mm aperture, details separated between 2 and 5 arc-seconds 
are shown better by the obstructed aperture. On coarse details separated more 
than 5 arcseconds the two contrasts are pretty much the same, but still slightly 
less than the perfect aperture. 

Thus, for low-power, deep-sky viewing, 1/4 wavelength of spherical aber-
ration is slightly worse than the obstruction. For double-star separation at or 
slightly beyond the Rayleigh criterion, the obstruction wins again. Only 

_________________________ 
1 See Table 10-1. 
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for intermediate spatial frequencies is the frequency response about the same or 
inferior in the obstructed instrument. 

The obstruction may be adjusted until the transfer functions are a little closer 
(the shadow diameter would be nearly 35% of the full aperture), but all-
inclusive comparisons should not be made without caution. 

 
Fraction of maximum spatial frequency 

Fig. 3-7. MTFs associated with various amounts of defocusing. 

3.4.1    MTF Associated with Defocusing 

The simplest way to degrade the image is by defocusing it. Figure 3-7 
shows the way MTF droops with increased defocus. At 1/4 wavelength 
defocus, performance begins to suffer noticeably; by 3/4 wavelength it is 
unacceptable. 

These transfer functions have an extremely interesting property. At higher 
values of defocusing, the transfer function becomes negative for some spatial 
frequencies. If this behavior is traced back through the contrast equations 
above, it is seen to result in a switch of bright and dark image intensities. The 
sinusoidal bar targets look like negatives of themselves.2 

Does this mean that at certain focus positions the star will look dark and the 
night sky light? Of course not. The image of a truly point-like star is 
composed of all spatial frequencies. The contrast is transferred with the 
correct sign at plenty of other spatial frequencies.   This bizarre effect 

______________________________ 
2 The MTF can't be negative under its strictest definition, but here it is allowed to carry the sign 

of the full optical transfer function when the phase is near 0 or π. See Appendix Β for more 
details. 
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does not affect normal images in this manner—it usually just contributes to the 
overall appearance of blur. However, if two or three cloud bands on Jupiter 
have the right separation, a slightly defocused telescope can result in a spurious 
band appearing between them. 

Just because it's rare does not mean that an arrangement can't be made to 
allow observation of this effect. In Fig. 3-8 contrast reversal is readily seen. 
This picture was taken with a severely defocused camera lens pointed at a radial 
bar target. These bars aren't sinusoidal but they are periodic. As the pattern 
passes through a completely unresolved gray area, it emerges on the other side 
with the opposite intensity. Only near the edge does it fail to act this way 
(Goodman 1968, p. 126). 

 
Fig. 3-8. Defocused radial bar target.   Look from the narrow end at glancing incidence to the paper. 
Some of the bars reverse dark-to-light. 

3.4.2     Stacking of MTFs 

As long as the optical difficulties are independent of one another, the total MTF of 
the system is just the individual MTFs multiplied together according to the following 
recipe: 
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Each quantity in brackets is known as the degradation factor of the optical error 
denoted by 1, 2, etc. The numerator of each degradation factor is the MTF as it 
would have been measured if the aperture suffered from that optical problem 
alone. 
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Of course, no two optical difficulties are truly independent, even if they 
seem to be unrelated at first glance. From Fig. 3-6 we may reason that 
spherical aberration on the surface has nothing to do with a secondary 
suspended above it. But the secondary casts a shadow on the mirror and thus 
changes the contribution of the aberration to the wavefront. The middle spatial 
frequencies of the "Both" curve of Fig. 3-6 is not as bad as expected from this 
degradation equation. 

A particularly fortunate result of this lack of independence is the effect on a 
zonal defect at the center of a mirror. If the diagonal is sufficiently large, it 
will completely shade the error and you will not be able to detect the 
aberration. 

Some optical devices, particularly those without interchangeable eyepieces, 
have optics designed as a unit. Aberrations inherent in the objective are 
canceled by oppositely directed aberrations in the eyepiece or other tailpiece 
optics. When separated, they perform poorly or not at all (common in military 
surplus equipment). When trying to use the degradation equation for such 
optics, the evaluator must be careful to circumscribe the whole system—not 
just part of it. 

For most astronomical telescopes, the unknown nature of what will be 
attached at the back (whether it is a camera or an eyepiece) demands that the 
objective alone do good imaging. An unwritten protocol in the design of 
astronomical telescopes demands that the designer encapsulate the maximum 
number of desirable features at the focus of both the eyepiece and the 
objective. 

Methods exist to measure the MTF curve for a set of optics, but later 
chapters will not emphasize them, since they involve a great deal of extra 
equipment (Baker 1992, Murata 1965). This book concentrates on the the-
oretical description of ideal cases. Pay close attention to the MTF curves in 
the pages that follow. Even though these curves may appear uninteresting and 
similar to each other, they encompass all optical problems. If you learn to 
interpret them, you will better understand the way your optics are degraded. 



Chapter 4 

Diffraction 

For people learning diffraction the first time, the various viewpoints 
presented in this chapter may be overwhelming and the main conclusions can be 
lost in the detail. Several elements are crucial for this discussion, however, so 
let's look at them at the beginning: 

1. Diffraction is caused by the wave nature of light. Because light cannot be 
localized, images are necessarily fuzzy. The quantum mechanical concept 
of the photon as a particle does not help fix its position. 

2. Diffraction is a consequence of a limited aperture. It is an angular blurring 
that is independent of the focusing power of the instrument. 

3. Diffraction is not just a phenomenon observable in the rings. The spread of 
the central spot is caused by diffraction. 

4. Quasi-static light and dark regions exist because diffraction can be 
modeled as a standing wave, with the aperture providing the boundaries. 

5. A limit exists to optical quality that is difficult to exceed. 

Once readers have a working knowledge of diffraction, the star test is more 
easily understood. Diffraction itself is not often explained well, and many 
people believe a kind of folklore about what it is and what causes it. Authors 
either sidestep diffraction entirely, or they take the too-easy refuge of 
mathematics. The scarcity of introductory instructions is unfortunate, because 
the concepts underlying diffraction are not all that difficult to understand. More 
importantly, some of these ideas are the most beautiful and fundamental in 
physics. Diffraction touches on notions as varied as the limits of what is 
knowable and concept of the particle. 

55 
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Diffraction is much more than the process that generates rings around a 
stellar image. While it is true that diffraction makes these rings, it is possible to 
shade the edges of the aperture to make such ringing arbitrarily small. 
Diffraction, though, still blurs the central spot. Images without rings still display 
diffraction. Literally, diffraction means a "breaking up" of a wavefront, which is 
disturbed by passage of the wave near an obscuring body. 

Say that we were in a universe where light consisted of infinitely tiny 
particles that could be traced from the star, through the telescope, and finally to 
the eye. Diffraction would not exist in such a world. Either the particles continue 
undisturbed beyond the obscuring body, or they hit and are stopped. Close 
approach would make no difference. The region outside the illuminated cone 
near focus, where you wouldn't normally expect light, is called the geometric 
shadow. 

When optical designers ray trace optics, they are using the "light-as-
particles" assumption that light will go only where geometry allows. The 
concept of light moving in particles is called "ray optics." In ray tracing the 
system, they are assuming that light will go through the optics as if it were a tiny 
elastic sphere, smacking into optical surfaces, deflected according to empirical 
rules of refraction and reflection. Surprisingly, this ballistic model will predict 
the course of light fairly well. To first order, it does a fine job. 

Unfortunately, the behavior of light has other characteristics not explained 
by modeling light as a particle. Light seems to be able to turn corners. By itself, 
this feature is not too surprising. Any enterprising 17th century physicist could 
have postulated, for example, that a particle of light has some finite size. As it 
brushes near a surface, it could be pushed back into the lit region. But 
experiments done near straight edges showed that light was deflected into the 
shadows of the obscuration. Instead of banging its shoulders into the obscuring 
body and being thrown into the lit region, the light ray seemed to be grabbing 
the edge of the aperture and swinging around. Strangely, some of the shadow 
also seemed to bleed into the lit region. 

Some angles of deflection are preferred. Moving away from the position of 
best focus, the illumination dims as expected. But here's the strange behavior—it 
then starts to brighten again. With higher and higher angles, the illumination 
goes through many such oscillations, which cause the familiar diffraction rings 
around stars. A theory postulating light as particles has no way of understanding 
such behavior, except by supposing a defect in the optics. At focus, one doesn't 
expect light to be anywhere except at a dazzling point in the center. 

The eventual explanation came by saying that light did not resemble 
particles as much as waves.   Many of these effects can be observed in a 
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puddle—or other shallow pool of water—by watching the behavior of the water 
waves in the surface. Lay a piece of wood across part of the puddle so that it 
interferes with the steady course of waves, and start a wave by dropping a 
pebble on one side of the pool. Notice that as the wave passes the end of the 
wood, it curls around into the protected region. This is diffraction. 

Water waves are very interesting, but they don't immediately seem to relate 
to optical quality in a telescope. However, we will see how the behavior of a 
wave near an obstacle or edge results in degradation of the image. Diffraction is 
the mechanism that produces unavoidable imperfection in telescopes. 

In the old light-as-particles model, the image could be perfect as long as the 
surfaces were perfect. The tiny particles would fly into the telescope, missing all 
of the obstructions. They would then be perfectly deflected by the optics, 
always imaged at just the right point. Rays in a perfect instrument either miss 
the telescope entirely or are placed in an infinitesimal blur circle. We could 
carefully inspect the image of exceptional instruments and indeed see a tiny 
replica of the star. Nearby, we might also observe an even smaller planetary 
image. 
Unfortunately, the real world of optics doesn't permit infinite precision. Waves 
are not localized. It's much like finger-painting while wearing mittens—
drawing fine lines or dots is impossible with such pudgy fingers. People have 
often thought that diffraction could be suppressed by obscuring or diffusing the 
edge. However, diffraction originates because wave energy exists in a finite, 
restricted aperture. The aperture is always in our optical system, so modifying 
the edge shapes the course of how waves are broken up, not the fact that they 
will be disturbed. We can shove diffraction effects around like a child 
rearranging vegetables on a dinner plate, but we are unable to make them go 
away. 

4.1    The Coordinates of Light 

Where is a light wave? In Fig. 4-1, try to point out the location of the light 
wave. One might conjecture that the light wave is one of the long crests that is 
depicted in the figure, but this conjecture mistakes the graphical portrayal for 
truth. In depicting the progress of light, it is convenient to trace out the crests 
or troughs, but those locations have no special implication. The points halfway 
up the wave are no less part of the wave. In pointing out a wave, we must be 
careful not to allow human interpretation to color the answer. 

How could we choose one crest over another? We might mark a wave crest 
corresponding to a feature of telescopic interest, such as the one just 
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Fig. 4.1. Part of a wave. 

passing through the aperture. Such an assignment has no meaning, however. 
Light doesn't care what is planned for it; it has no memory or motivations. 

The answer to the original question is easy but unsatisfying. The wave isn't 
at any specific location. In fact, a better way of describing a wave is to 
recognize it as a dynamic process. 

The important thing to remember is that a wave has sources (lamps, lasers, 
stars, etc.) modified by boundaries. The sources are the points that can be 
enclosed in volumes observed to be emitting more energy than they are 
receiving. The boundaries are comprised of the diffracting obscurations, the 
edges of the aperture, the reflecting surfaces, and the transition surfaces between 
refracting media. The behavior of the wave at those surfaces (whether it is 
absorbed, reflected, or transmitted at a slower speed) must be specified. To 
describe diffraction properly, we must solve what is called a boundary-value 
problem for the wave equation in the region of interest. 

Where a wave is coming from, how strong it is, and where it is going are 
more important than where it is. Our wave is like a choreography script, with 
each tiny location in space having its own dancing instructions. The wave we 
perceive is the totality of all of these dancers moving in concert. 

The very fact that we can't point at a particle of light and say "it is there" 
puts some uncertainty on light's ability to be directed. This softness in light's 
location induces the blurring of the final image. 

The quantum revolution revealed that light is packaged into discrete 
particles called photons. Since the quantum theory is a refinement of earlier 
methods, doesn't that mean that light is comprised of little rays after all? 

The quantum theory is strange and non-intuitive. To understand it, we must 
be willing to abandon our experience of the macroscopic world. We are just too 
big to use what we know about the world in an effort to visualize the quantum 
universe. 
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In quantum mechanics, a way one can describe the position of a photon 
before it has been detected is to give its probability density, i.e., the likelihood 
of encountering the photon at a particular location. A particle's probability 
density is related to its wave function. Where the wave function is strong, the 
probability density is high. But the density is only measurable by running many 
photons through the optics. 

Perhaps the best way of explaining this principle is to imagine the following 
experiment. Say we had the aperture of Fig. 4-2a, and a single photon was 
coming from the left. Photographic film is at the focus. The photon strikes the 
emulsion at location A, triggering a response in a single grain of the 
photosensitive material. If we were to stop here and develop the film, we would 
already have contradictory evidence. On one hand, the darkened grain isn't 
located precisely at the location of geometric focus, which is where the dotted 
line intersects the film. But the emulsion was only struck at that one point, 
leaving us with the impression that a particle was detected. "Maybe the 
alignment is off," we might say, and carefully run the experiment again. Now it 
hits at B. 

 
Fig. 4-2. a) One hit at A; b) another hit at B; c) many hits with histogram. 

At this point sensible photographers would recognize that they will run out of 
film before they get any closer to the truth.  For the next trial, we 
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leave the film in long enough to gather many photon hits. We divide the area 
into miniature areas called picture elements, or pixels, then count all the hits 
within each pixel and plot them to the right as in Fig. 4-2c. Now we see a 
trend—the diffraction pattern is beginning to show. But we already know that 
such behavior is explained by a wave. 

So, we return to the original question, is light best described by particles or 
waves? On one hand, it is clearly observed that something impacts the 
photographic emulsion at individual locations. You can dim the intensity of the 
light until the grain darkening rate is arbitrarily slow. That seems to indicate tiny 
particles. On the other hand, lots of such individual particles are statistically 
distributed in the pattern expected for a wave. 

We took it as an article of faith that light has no intelligence or motives. 
Here we seem to find that photons apparently can remember where other 
photons have already been detected. Record-keeping and communications are 
two more powers that are difficult to ascribe to light particles. 

We have encountered so-called "wave-particle duality," one of the seeming 
paradoxes of quantum physics. The whole idea of particles (whether they be 
photons, electron, quarks, or whatever) whizzing around is an example of one of 
those concrete real-world ideas that doesn't apply at the quantum level. We 
cannot impose our kind of macroscopic reality on the microscopic situation. We 
would like particles to be neatly spherical, to be colored with different hues, and 
all to have a bright, rectangular highlight where a window reflects on the upper 
left side. But the quantum world doesn't present us with such comforting 
pictures. The important thing to remember is that we cannot measure whether a 
photon is a particle or a wave at the same time. 

The only way we can determine the existence of a photon is to pin it against 
a photodetector. We can think of it as a wave as long as we don't try to locate it. 
When we do, its probability density collapses from an infinity of locations 
defined by the wave function to a single point. We can look at the tiny grain of 
the photograph and say "it was there" as long as we realize that the verb is in the 
past tense. The only way to be sure a photon exists is to destroy it. 

The first physicist to put this in mathematical form was Werner Heisenberg, 
who expressed what is known as the uncertainty—or better, "indeterminacy"—
principle. Far from being a discouraging limit to what we can know, this 
principle tells us new things about the dynamics of particle motion. One can 
even use the indeterminacy principle to derive an approximate expression for 
the radius of the diffraction disk. 

What is unknown about this situation is where the photon (that is, the "ray") 
entered the aperture. We know where it ended up and where it started, but we 
are uncertain about the intervening path. The Heisenberg 
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indeterminacy principle is stated roughly as follows: The uncertainty in the 
momentum of a particle in a certain direction times the uncertainty of its 
position is approximately a very small constant, or 

hypy ≈ΔΔ                                                     (4.1) 

where Δpy is the fuzziness in momentum in the y direction, Δy is the fuzziness 
in position y, and h is that small number, called Planck's constant. We can 
rewrite this approximation to find the spread of the detection angle after many 
counts: 
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The expression for the momentum of a photon is the energy divided by the 
speed of light, or E/c. The photon's energy is Ε = hv. The constant c is the 
speed of light, ν is the frequency of the light, and λ is the wavelength; c = vλ 
describes the way these quantities interrelate. The uncertainty in position Δy is 
just the diameter of the aperture D. Thus, the uncertainty in angle becomes 
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This result is close to the 1.22λ/D expression for the angular radius of the 
Airy disk.1 

4.2    The Consequence of Filtering 

We have already seen in Chapter 3 how the telescope has a limited spatial 
frequency response analogous to the 20-20,000 Hz frequency response of audio 
equipment. What is the implication of that filtering? Can knowledge about the 
limitation on spatial frequencies be used to derive interesting facts about 
diffraction? 

The two-dimensional circular surface of an aperture injects some non-
instructive mathematical complications into the problem, so it will be easier to 
turn once again to the simpler situation of audio electronics. In this case, we 
are interested only in variations in time or frequency. 

The audio analogue of a star or a point optical source is an electronic pop. It 
could also be caused by a scratch or fault on an old vinyl LP disk. If you've 
ever tried to listen to a distant radio station through an intervening storm, you 
are probably familiar with the staccato crackle as a lightning strike takes place. 
One thing that you probably did not notice, however, is that every one of those 
pops sounds identical, varying only in amplitude. 

__________________________ 
1 Equation 4.1 is simplified.  Those who are interested in this topic can find more in any 

elementary quantum mechanics text, e.g. Park 1974. 
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This fact seems innocent enough, but it gives us an insight into sound 
reproduction. Every little crackle sounds precisely the same through one audio 
system. If you listened to another audio system having a greatly different 
configuration—say a cheap, hand-held transistor radio compared with your 
stereo—it may have a different tonality. Yet each pop produced by that other 
radio is the same as well. 

The correct interpretation of this uniform behavior is that you aren't 
listening to details of the electrical activity in the storm or the source. You're 
hearing some sort of signature of the reproduction device itself. The crackling 
noise is merely its best attempt at reproducing an abrupt jump. 

At the beginning of the 19th century, physicist Joseph Fourier discovered 
that complicated, even discontinuous, functions could be simulated to 
arbitrarily high precision by the sum of a series of sine and cosine functions of 
higher and higher frequency. A "pop" could be described by this infinite series: 

 
a(t) = 1 + 2(cos(t) + cos(2t) + cos(3t) + ...),         (4.4) 

where a(t) is the amplitude as a function of time. The sharp crack we actually 
hear is the intensity I = a2(t). 

Being a filter, the audio system doesn't transfer frequencies to an arbitrarily 
high value; it starts failing at about 20,000 Hz. Thus, we're going to have to 
truncate this series somewhere. Figure 4-3 shows the effect on the intensity if 
we lop off the series at 10 cosine terms. The sharp spike of the crackle has been 
reduced to quite a different function. 

This response function resembles a diffraction pattern, complete with rings. 
In fact, it is identical to the diffraction pattern of a slit or rectangular aperture. 
Diffraction is a result of the optical system's failure to transmit arbitrarily high 
spatial frequencies, just as the ringing of Fig. 4-3 is an effect of the limited 
audio bandwidth. A point-like star acts like a sharp audio impulse. A star's 
diffraction pattern is similar to an impulse response function. It is called a point-
spread function because most stars are far away and occupy insensibly small 
angles. Not only do rings appear in Fig. 4-3, but also the infinitely sharp spike 
has broadened into a narrow peak of measurable width. 

Astute readers probably realize that the symmetry of the pattern means the 
response curve oscillates long before the pop on the record actually happens but 
that such an oscillation isn't possible. The name of this limitation is causality, or 
the requirement that cause precede effect. Causality is a central issue of special 
relativity, but it even has implications here. The symmetry of Fig. 4-3 is an 
artifact of the simple-minded way this process was modeled. The phase shifts of 
the individual cosine terms in the equation above were ignored.   We implicitly 
assumed that 
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Time on recording [arbitrary units] 

Fig. 4-3. The intensity of an audio crackle is simulated as a truncation of the series in Eq. 4.4. 

all signals go through the system at the same speed with the same phase. An actual 
system delays every frequency a little and adjusts the phases in such a way that no 
signal could be detected before it happened. The pattern would become asymmetrical 
with most of the ringing coming after the sharpest spike. Each audio system has its own 
characteristic slurring of this pattern. 

Fortunately, optical diffraction patterns aren't calculated from time-based 
frequencies and don't have to obey causality. They can be nicely symmetrical. After all, 
spatial frequency is only a convenient analogy to true frequency. You are free to look at 
either side of an optical pattern, but you can't go back in time. 

4.3    Waves Are Reborn 

The next and most important way we will look at diffraction is a very old theory 
originally proposed by Christian Huygens (1629-1695) to explain why light is observed 
in the shadow region. 

The term wave propagation is used without much attention to its origins. 
Propagation is a word originally associated with botany, where it meant to make new 
plants from cuttings. Its meanings include the multiplication, reproduction, or 
dissemination of plants and animals. It has come to mean the spread of ideas or even 
misinformation (hence, "propaganda"). But the concept of reproduction is inherent to 
propagation and gives a clue as to what Huygens suggested. 
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Huygens could explain light appearing in shadows by assuming that every 
point on a wavefront was emitting its own spherically diverging wavelet. The 
next instant of the wave would be given by the sum of all of these tiny 
wavelets. Only in the direction the wavefront was traveling would the wavelets 
not cancel each other. In other directions, a sideways-moving wavelet would 
cancel another point's wavelet that was out of phase with it. Similarly, if a 
hedge tries to grow sideways, it finds that a leaf on another branch has already 
taken the sunlight. The only direction that growth is free is upward and 
outward. 

An instant later, each new point of the wavefront would emit yet another 
spherically diverging wavelet. Similarly, in the hedge, inner leaves wither and 
are replaced by outer leaves. Thus, we could describe wave progression as a 
rebirth at each new wavefront, a "propagation" in the old botanical sense. 

 
Fig. 4-4. Free-held divergence of a spherical wave. 

The situation of Fig. 4-4 does not require a consideration of propagation, but 
in Fig. 4-5 we see a reason for it. When the wave propagating from a distant 
source encounters an aperture, a sudden disturbance occurs in the beautiful 
symmetry. Points inside the aperture emit wavelets up, down, or out, but no 
corresponding sources over in the shadow of the aperture provide canceling 
interference from that direction. In the center of the aperture, the wave 
propagates much as it did in the free-field, but off at the edge, some of the 
energy leaks over into the geometric shadow. The little points emitting wavelets 
are called elemental radiators or secondary sources. These radiators aren't 
envisioned as truly hanging like beads at the aperture. They are only an infinite 
number of mathematical points. 
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Fig. 4-5. Diffraction of a plane wave at an aperture.

 

Fig. 4-6. A lens, aperture, and eyepiece showing tilt aberration. 

4.3.1    Diffraction and Focusing 

Diffraction in astronomical telescopes is caused by the restriction of light to 
an entrance aperture. Focusing is a convenience imposed on the optical system. 
This is implied in Fig. 4-6, where the aperture and the focusing power have 
been divided into two independent functions. One function is the windowing of 
light by an iris or a rectangular cover—the diffracting aperture. Diffraction 
occurs whether the light is focused or not; it happens even in pinhole cameras. 

All optical work is done on the nondiffractive focusing parts of the optical 
system. Thus, the optician's task is not to make an existing problem 
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worse by adding additional aberrations to a lens or mirror.   An optician cannot 
correct the window through which the telescope is looking. 

The following discussion assumes that the focusing is already done when 
the wavefront encounters the aperture. This convention does not change the 
general principles involved. 

4.3.2     Fresnel Zones 

At focus, all of the radiators should oscillate with the same phase. Every 
point of a perfect aperture appears to be cycling together with every other point. 
A sensor at such a focus is awash in light. However, at a slight angle with the 
optical axis (as in Fig. 4-6), the sensor sees some of the points oscillating a little 
behind the other points. They aren't really doing anything different, but part of 
the aperture is farther away. Because time passes as the light goes the extra 
distance, those radiators are perceived at the offset point's location to be lagging 
behind the rest. Partial wave cancellation results in the total intensity of the light 
being less at this lateral distance from focus. 

If the sensor is far enough off axis, some distant portions of the aperture are 
seen to be once again in phase. Actually, they are a full wavelength behind the 
near portions of the aperture, but since the oscillation is sinusoidal, we can't tell 
the difference. The sources of those waves are atomic transitions that occur 
quickly, but the burst of light can be a single wave packet many meters and 
millions of wavelengths long. In the course of a few wavelengths, we really 
can't see any difference from one wave crest to another. 

Different delays are indicated in Fig. 4-7 by Fresnel zones,2 dark and light 
regions on the aperture. Zero phase occurs only at the interface between two 
zones. Elemental radiators that are ahead in phase are denoted as "+" regions. 
Points that are behind in phase are called "—" regions. The dark or light color is 
only an identifier of each region; it denotes a phase change of a half wavelength. 
It does not represent the actual appearance, nor does it represent the 
illumination. In reality, these regions gradually fade into each other. The actual 
phase varies smoothly, but these regions jerk from one sign to the other. 

The detection position in Fig. 4-7 is indicated by a tiny dot, which is in the 
focal plane of an eyepiece. Furthermore, the pattern on the aperture indicates the 
Fresnel zones as seen from that dot, rather than from our outside perspective. 

This pattern changes rapidly. In only 9.2 x 10-16 seconds, the pattern is 
reversed from positive to negative (remember, the waves are flying into the 

_________________________________________ 
2 Named after physicist Augustin J. Fresnel, 1788-1827. 
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Fig. 4-7. Fresnel zones as seen from a point offset from a star. Notice the projections of the light 
cone on the bottom and far wall of the telescope. This offset is 1.22fλ/D above the focused image. 
The positive and negative areas cancel so that this offset is the first dark ring. 

aperture). If we follow the motion of the bars incrementally over small time scales, they 
are rushing down. If the detector is on the lower side of focus, they rush upward. The 
actual received wave at any given location is the average over time of the summed 
phase values of all these tiny radiators. 

The Fresnel zone description of phases on the aperture should not be confused with 
the appearance of the image. Each location on the image has its own set of Fresnel 
zones. The Fresnel zone patterns are not observable directly since they refer to the wave 
field and we are capable of measuring only intensity at the sensor. This Fresnel zone 
picture is a convenient model, nothing else. Nevertheless, it succeeds in demonstrating 
many of the phenomena of diffraction and is the basis of the more accurate calculations 
described in Appendix B. 

At risk of being too simple-minded, let's think of that aperture as being a large disk 
of construction paper. To determine the net wave intensity, we cut out all the like-
colored areas of the disk and throw them into two separate piles, one positive and the 
other negative. We then weigh each pile and come up with two values, say 5 grams 
negative and 4 grams positive. Four grams cancel each other, leaving us with 1 extra 
gram of negative weight—call that value the "wave sum." Thus, the average wave sum 
is -lg/9g = — 1/9. To calculate a number proportional to the intensity of the light, which 
is always a positive quantity, we need to square this sum to yield an intensity of 1/81. 

The intensity is weak, so our offset must be somewhere between the rings. Figure  
4-7 is actually at a balance point. It is precisely between the 
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Fig. 4-8. Second minimum of diffraction pattern at 2.23fλ/D 

rings, and so the dark area should cancel the light area, depending on the quality 
of the drawing and our skill with the imaginary scissors. Figure 4-8 shows the 
next dark ring, which occurs at a distance farther from the axis. Here the tilt is 
worse, so more zones show, and two more bars are visible. Between the offsets 
of Fig. 4-7 and Fig. 4-8 is the first diffraction ring, where the positive and 
negative sections do the worst job of canceling each other. Five bars show there, 
but the two outside bars are very thin. 

The important thing to learn from Fresnel patterns is that the wave sum is 
inefficient everywhere except precisely at perfect focus. Think about the 
construction paper again. At focus the aperture everywhere has the same sign—
nothing cancels. The wave sum is 9g/9g, and the intensity is 1. On even the 
brightest portion of the first ring, you would get an uncanceled wave sum of 
about 1.2g/9g and a light intensity only about 1/57 the brightest value. The 
farther you go sideways, the worse the situation gets. At some point you realize 
that all you're cutting out are almost equal narrow ribbons of construction paper. 

4.3.3     Fresnel Zones with Defocus 

The wavefront changes character when the eyepiece is defocused. Figure 4-9 
shows the induced aberration at the aperture if the eyepiece is drawn back. The 
resulting Fresnel zones are circular, as in Fig. 4-10. With the passage of half a 
wavelength, the pattern reverses, producing a negative spot in the center. 
However, the square of the wave sum is the same, so the intensity has the same 
positive value. For sensor locations beyond focus, the passing of time would 
show a collapsing pattern with new zones appearing at the 
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Fig. 4-9. Defocusing aberration. The secondary sources are vibrating on the solid arc, yet the 
eyepiece's focal plane is at the center of the dashed arc. The aberration resembles a smoothly 
pushed-in deformation. The center of the aperture appears delayed relative to the outer portions. 

 

Fig. 4-10. Fresnel zones at a defocusing aberration of 1.7 wavelengths. 

edge of the aperture. These new zones move inward to disappear at the center. For 
locations inside focus, we'd see identical snapshot patterns, but new zones would 
appear exploding from the center and moving out. 

Even though the pattern is collapsing and we could have picked any snapshot, the 
wavefront phase is chosen so that the central spot is biggest. The total amount of 
defocusing aberration in Fig. 4-10 is about 1.7 wavelengths. This value may be 
determined by counting colors from the center and moving out; the edge is about 3.4 
half-wavelength zones out. 



70 Chapter 4.   Diffraction 

We deliberately choose the wavefront phase so that the area of the central 
positive zone is exactly equal to the areas of all other zones ringing it. The wave 
sum should be zero when the number of zones is 2, 4, 6, etc. More elaborate 
theories predict the on-axis image intensity goes to zero when the defocusing 
aberration is 1, 2, 3 ... wavelengths, just as predicted by this simple Fresnel zone 
model. 

Moving upwards, as in Fig. 4-11, shows the effect of mixing tilt and 
defocusing aberrations. Figure 4-12 is the same image pattern with an arrow 
pointing out the sensor location on the image. The edge of geometric shadow is 
shown as a light ring. 

The strong, outer ring seen in most defocused patterns corresponds to the 
location where the central Fresnel spot begins sliding off the aperture. (In fact, it 
is half gone at the beginning of geometric shadow.) Thus, the slightly brighter 
edge ring in defocused images represents the last flourish of the central Fresnel 
zone before it disappears and darkness closes in. Notice how the brightest parts 
of the disks do not fill the circle of geometric shadow and how some of the light 
has escaped the disk to occupy the shadow. If that pattern were described by ray 
optics, the disk would be an absolutely featureless circle with perfect darkness 
outside the radius of geometric shadow. 

This image shows another intriguing behavior. Soft rings terrace the pattern, 
even in the shadow zone. As the sensor is offset further, fresh Fresnel zones 
come into view, each causing a wiggle in the intensity. 

4.4     Nodes and Antinodes 

Certain locations in the volume around the brightest image point appear to 
be dark compared with their immediate surroundings. Figures 4-7 and 4-8 
showed two such points on the first and second dark rings. In defocusing, on-
axis darkness is found when the number of Fresnel zones is an even number. 
These locations appear to be quiet while the tumult rages around them. They are 
nulls, more commonly called nodes. The opposite of a node is an antinode, 
where the wave action is strongest and the brightness is at a local maximum. A 
good example of antinodes are the peaks of the diffraction rings, as well as the 
highest point on the central image spot itself. 

Everyone has seen nodes, even though many aren't aware of it. If you look 
carefully at a guitar string, you can see the simplest type of vibration in Fig. 4-
13a. There are two nodes at the bridge and fret, and a single antinode at the 
center. This situation is called a standing wave. Of course, the presence of the 
two nodes at the edges of the string is hardly a surprise. These positions are 
mechanically constrained and can hardly be expected to move much. 
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Fig. 4-11. An off-center bull's-eye Fresnel zone pattern showing two aberrations (defocus and tilt) 
mixed together. 

10 

Sensor location in Fig. 4-11 

Geometric shadow outside of this radius 

Sensor location in Fig. 4-10 
 
 

1.7 

Fig. 4-12. The indicated location is where the intensity is calculated as the Fresnel zone sum of 
Figs. 4-10 and 4-11. The bright ring indicates the boundary of geometric shadow. 

But nodes can hang freely in space, seemingly held by no physical restraints. If you 
pluck the guitar string as in Fig. 4-13b, you will see the pattern of Fig. 4-13c shortly 
after you release the string. After more time passes, it will decay to the situation in a). 
When you plucked the string, the stroke contained a multitude of frequencies (remember 
Fourier and the impulse response function). The strongest frequencies are the 
"fundamental" in a) and the "first harmonic" in c). No modes of vibration exist other 
than multiples of the fundamental frequency. 
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node antinode node

Fig. 4-13. Nodes and antinodes of a guitar string. 

Situations a) and c) are an octave apart. What if you want a tone somewhere 
in between? You can't find it with a fixed distance separating the fret and 
bridge. To obtain an intermediate tone you must depress the string at another 
fret (Fig. 4-13d), which implies a new fundamental and new harmonic 
sequence. 

Now, if nodes and antinodes were only found in stringed instruments, they 
would hardly be useful for a discussion of diffraction. Standing waves are 
everywhere, however. For example, they are visible on the surfaces of rapidly 
vibrating liquids. These standing waves are sometimes seen in a coffee cup or 
other container shaking on the same tabletop as an appliance or tool with a fast 
electric motor. The surface appears almost stationary, even though you know 
intellectually that the speed of water waves is much faster than the almost 
leisurely drift of the waves. An equivalent to the bridge and fret in this case is 
the edge of the container, and the standing wave appears in the two-dimensional 
surface of the fluid. If the container is round, the most likely vibration is radially 
symmetric. If it is square, you see a sort of checkerboard figure. 

A three-dimensional case can occasionally be found in an old microwave 
oven. Microwave cooking patterns are typically stirred by a hidden metal fan 
placed over the exit portal of the microwave transmitter. These fans can fail, and 
the only noticeable change is that cooking becomes very uneven. A stationary 
standing wave pattern is set up that overheats at the antinodes and leaves the 
food almost raw at the nodes. 

Even with a working fan, holes and bright regions can interfere with even 
cooking. For this reason, the food must be moved at least once during cooking. 
Everyone has experienced the tiny hot spots that scorch overheated popcorn in 
microwave ovens. These antinodal regions are roughly 1-2 cm across. 

What are the bridge and frets here?   The microwave oven is a metal 
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cavity whose walls are nodes because electrical conductors cannot have electric 
fields deep within them. Since any form of electromagnetic radiation has both 
electric and magnetic fields propagating in tandem, the metal cavity reflects 
microwaves efficiently. Even in the window, you are looking through a metal 
mesh that behaves as a solid metal wall to microwaves. The food is always 
elevated on a low tray because it won't heat right against a node. 

Here's the connection to telescope optics. A telescope aperture is oscillating 
at a given unchanging frequency (like the microwave transmitter). Bright 
places in the image are the equivalent of hot spots in the oven. Dark places are 
similar to cold spots that leave food uncooked. 

We can thus interpret the behavior of the diffraction structure near focus as a 
standing wave. A slice through the focal region of an image that suffers from a 
small amount of spherical aberration is depicted in Fig. 4-14. This figure shows 
how the light collapses to focus and expands again beyond it, with the region 
closer to the objective on the left above the label —2 and the region farther 
from the objective above the label 2. It is printed at very low contrast to 
emphasize the low-level structure. The nodes and antinodes are easy to 
identify. Because the aperture is a rigid geometrical structure, there are 
locations where the wave doesn't fit correctly and places where the vibration is 
favored. 

SA=-0.12 slice pattern 6 

 
-2 2 

Fig. 4-14. Longitudinal slice near focus of an aperture suffering from slight spherical aberration. 

This situation is very much like a brook trickling over a rocky streambed. 
Over one particular pebble, the surface of the water is elevated a small 
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amount. In other places the surface seems undisturbed. The overall look is 
deceptively frozen, and we forget that in only a few moments all the water has 
moved downstream to be replaced by fresh water occupying the same 
configuration. 

Similarly, we interpret the standing wave of the image as some sort of fixed 
artifact, but energy is rushing through the instrument at the speed of light. The 
nodal points that can be seen as dark rings in the focused image and 
corrugations in the defocused image are induced by the geometry of the 
situation. They are more like the pebble than the water. Aberrations disturb the 
geometry and in doing so affect the standing waves. 

4.5     Other Aberrations—The Pupil Function 

The tilt and defocusing aberrations are correctable errors. True, you can't see 
much if the image is defocused, but you can regain a crisp image with only a 
turn of a knob. Tilt error merely requires you to redirect your gaze to the center 
of the stellar image. The observer can't get rid of the smearing of the image 
caused by diffraction, but if the magnification is small enough, that spread is 
acceptably small. 

Up to now, the discussion has been mostly about perfect apertures. What 
happens when some imperfection causes the wavefront to buckle as it passes 
through the aperture? Our little secondary sources, or radiators, are no longer on 
the surface of a sphere. They are confined to some sort of surface shape for 
which no unique focus position can be found. Asymmetries form in the node 
patterns (as in Fig. 4-14). 

The best focus position no longer sees these radiators at a single phase. The 
wave sum can never equal the whole area of the aperture. Of course, for most of 
the realistic aberrations considered in this book, the errors at best focus will 
never get so large as to demand more than one coarse Fresnel zone to show it. 
Not until aberration amounts to 1/2 wavelength peak-to-valley will more than 
one Fresnel zone appear on the aperture at best focus. A more accurate way of 
doing the wave sum will show that the peak intensity is always less than unity 
for aberrated apertures. 

These Fresnel zones are a good educational device, but they don't allow 
sufficient gradation to permit detailed examination of what is happening with 
radiators at the aperture. For that, we need to introduce the pupil function. For 
now, we can define the pupil function as a surface containing information about 
both the phase and the transmission of the aberration. It is defined more 
precisely in Appendix B. 

The aberration distortion of the wavefront for simple defocusing appears in 
Fig. 4-15. The aperture is shown below the wavefront. Fresnel zones are 
contours of such a surface. The transmission portion of the pupil function 
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looks like a flat tabletop because this aperture has uniform transmission to the 
edge. Most of the pupil functions appearing later will have similar on-off 
transmission behavior. The aberration function is shown most often because it is 
generally the most interesting component of the complete pupil function. 

 
Fig. 4-15. The aberration function of defocusing, with the aperture indicated in black below the 
wavefront surface. The direction of focus is up. 

Figure 4-15 shows the defocusing aberration function outside focus. The 
aberration function inside focus is a low mound. For a perfect aperture, the 
aberration function would be a flat plate. All of the optical difficulties ap-
pearing in this book will have an associated pupil function. Far from being just 
a conceptual device, the pupil function contains the essence of image formation 
in the telescope. Mathematical operations on the pupil function lead to the 
diffraction pattern and the modulation transfer function. 



Chapter 5 

Conducting the Star Test 

Astronomers have long used the star test as a comforting touch with reality. 
A quick turn of the focuser is often enough to confirm that the telescope is 
aligned, cooled off, and ready for operation. Making such a determination 
requires no reference to numbers, but occasionally you'll want to use the star test 
to estimate the strength of aberrations on the glass. You must then know exactly 
how far to defocus the telescope in terms of quantities that can be compared 
with wavefront deformations. 

Also, convenient use of the star test often has nothing to do with "stars." In 
some cases, atmospheric turbulence, apparent stellar motion, or waiting for a 
clear night makes using true stars too difficult. To conduct daytime or 
earthbound tests, you can no longer rely on the great distances and small 
angular extent of actual stars. When using an artificial source, you must figure 
the minimum distance at which it can be placed and the maximum size of the 
pinhole. If you are sloppy about these points, you could unfairly decide that a 
good telescope is bad. 

This chapter deals primarily with the following three topics: 
1. Translating defocusing aberration to the more familiar but less general 

topic of eyepiece movement. 

2. Sizing, making, and placing artificial sources. 

3. Setting up and doing an "official" star test, as opposed to the usual 
check of the operating conditions of the telescope. 

Important results of this chapter are listed in tables. For completeness, the 
derivations are sketched either here or in the Appendix. Those who are 
interested can see where some of the concepts in this chapter originated, but 
performing an effective star test requires no more than careful use of 
the tables. 

77 
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5.1     Defocusing and Sensitivity 

Figures appearing in this book avoid any reference to how far you must turn 
the focuser forward or backward to obtain a certain amount of defocus. Instead, 
any defocus amount refers to defocusing aberration measured in wavelengths on 
the aperture pupil (see end of Chapter 4). Why use defocus in such a peculiar 
manner, when the straightforward method of eyepiece motion can be easily 
understood by everyone? 

The answer is simple; telescopes are too different from one another. The 
exact amount the focuser must travel to show a given pattern varies with the 
focal ratio of the telescope. Telescopes with equivalent aberrations and 
obstructions will show identical patterns, but they all do so for different 
eyepiece motions. If you specify focuser motion, you must also give the focal 
ratio. The result is a muddy picture of a truly simple concept. 

Defocusing aberration, as measured on the wavefront, is a sort of universal 
coordinate system that classifies identical behavior in many different telescopes. 
In an effort to reduce the multiplicity of patterns, defocusing aberration is used 
as a generic variable. It has features that transcend telescope type. More 
importantly, it is easy to go the other way and calculate how far you must move 
the eyepiece to yield a given defocus aberration. 

5.1.1     Focuser Motion Related to Defocusing Aberration 
The defocusing aberration was mentioned briefly at the end of Chapter 4, 

but no derivation of it was made. It is a simple expression that describes the 
differences in the sagittae of two different wavefront spheres.1 The difference 
between two eyepiece positions for a given number of wavelengths of 
defocusing aberration is derived in Appendix E. The result is 

f-f' = Δf = 8F2Δnλ, (5.1) 
where F is the focal ratio, λ is the wavelength, and Δη is the change in 
defocusing aberration in wavelengths. 

If n is allowed to go from + 1/4 to — 1/4, this quantity becomes Δf = 4λF2. 
This is an expression for the depth of focus, or the maximum range for 
improperly setting the focuser. Since the diameter of the diffraction image is 
2.44λF, the image spot is much longer than it is wide. In fact, the length-to-
width ratio 

F
F

F
width
length 64.1

44.2
4 2

==
λ
λ                                 (5.2)  

________________________________ 
1 The sagitta is the amount by which the sphere protrudes through the aperture. Because the radii 

to the edges of this partial sphere look like stretched bowstrings, it was natural to name this quantity 
sagitta, or arrow. (See Figure in Appendix E.) 
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is nearly 25 for an f/15 instrument. 
The length of this sausage-shaped region is very helpful. It permits small 

amounts of error in the setting of focus in accessory instruments (such as 
cameras). It makes less difference in adjusting visual focus because focus is 
usually fine-tuned by the eye itself. Only those observers who have had cataract 
surgery or who have little flexibility in their eyes may be forced to rely 
exclusively on the focusing action of the telescope. 

Sidgwick gave another formula for depth of focus: Δf = 4(1.22λF2). This 
factor is 1.22 larger than the one derived here (Sidgwick 1955, p. 425). The 
seeming discrepancy comes from the methods used to derive the expressions. 
Neither formula is meant to be a crisp limit, only the point where the image 
begins to degrade noticeably. Both expressions are proportional to the focal ratio 
squared. Thus, an f/5 telescope has only a quarter of the focusing tolerance of an 
f/10 telescope. 

Tables 5-1a and 5-1b list eyepiece motions for varying focal ratios and 
defocusing aberrations. For example, if we defocus the image of an f/6 
Newtonian by 8 wavelengths, we can see from the tables that we must change 
the focus by 0.050 inches (or 1.27 mm). In the convention used here, one must 
focus outward when the defocus aberration is given as a positive number and 
focus inward if defocus aberration is given as negative. 

Much can be learned by carefully examining these tables. They show that 
defocus distances are vanishingly small for fast focal ratios. The first tabulated 
column is labeled by 0.5 wavelength of defocusing aberration, or about the 
depth of focus mentioned above. Yet to achieve focusing within ±¼ wavelength 
at f/4 (or Δη = 0.5), one must hold focus to within 0.0014 inches, or 0.035 mm. 
Clearly, if our eyes weren't somewhat internally adjustable, we would struggle 
to focus fast instruments. Slow motion helical or motorized focusers would 
seem to be justified for these low focal ratio telescopes. 

At the other end of the chart are extremely long focal ratios like f/22, which 
would describe two-mirror Kutter schiefspieglers. To induce 12 wavelengths of 
defocusing aberration in such instruments, we would have to move the eyepiece 
over an inch. It is apparent that on such slow instruments, we will scrutinize 
only small defocusing aberrations before running out of focuser travel. Long 
focal length telescopes, however, are usually lunar-planetary instruments. They 
are deliberately tested to higher standards, so small amounts of defocus are the 
most interesting. A focal ratio of 50 is included because you might mask down 
your instrument to see a supposedly perfect image. 

On fast instruments, the star-test image will probably be evaluated at high 
values of defocus, beyond even 12 wavelengths. This is not too much of a 
problem because the test is still sensitive to the relatively severe 
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Table 5-1a 
Defocus distances for different 

focal ratios and defocusing aberrations 
(distances in inches) 

Wavelength is 2.165 x 10-5 in 
Defocusing Aberration (wavelengths) 

0.5 1 4 8 12
Focal ratio

4 0.0014 0.0028 0.011 0.022 0.033
4.5 0.0018 0.0035 0.014 0.028 0.042
5 0.0022 0.0043 0.017 0.035 0.052
6 0.0031 0.0062 0.025 0.050 0.075
7 0.0042 0.0085 0.034 0.068 0.102
8 0.0055 0.011 0.044 0.089 0.133
9 0.0070 0.014 0.056 0.112 0.168
10 0.0087 0.017 0.069 0.139 0.208
11 0.010 0.021 0.084 0.168 0.252
12 0.012 0.025 0.100 0.200 0.299
15 0.019 0.039 0.156 0.312 0.468
22 0.042 0.084 0.335 0.671 1.006
50 0.217 0.433 1.732 3.465 5.197

Table 5-1b 
Defocus distances for different 

focal ratios and defocusing aber tions ra
(distances in millimeter  s)

Wavelength is 550 nm 
Defocusing Aberration (wavelengths) 
0.5 1 4 8 12

Focal ratio
4 0.035 0.070 0.282 0.563 0.845

4.5 0.045 0.089 0.356 0.713 1.069
5 0.055 0.110 0.440 0.880 1.320
6 0.079 0.158 0.634 1.267 1.901
7 0.108 0.216 0.862 1.725 2.587
8 0.141 0.282 1.126 2.253 3.379
9 0.178 0.356 1.426 2.851 4.277
10 0.220 0.440 1.760 3.520 5.280
11 0.266 0.532 2.130 4.259 6.389
12 0.317 0.634 2.534 5.069 7.603
15 0.495 0.990 3.960 7.920 11.880
22 1.065 2.130 8.518 17.037 25.555
50 5.500 11.000 44.000 88.000 132.000

aberrations that pester these instruments. 
The best way of using Tables 5-1a and 5-1b is to look up the values 

corresponding to your focal ratio and write them down somewhere. It might 
even be convenient to calibrate your focuser knob. Rack it a full turn and see 
how much it advances focus. This procedure is easy on Newtonians and 
refractors. You just measure the change in the amount of protrusion in the 
focuser tube. For example, if one turn of the knob yields 3/4 inch (19.05 mm) of 
focuser travel, a 30° twist gives about 1/16 inch (1.6 mm). 
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This motion is equivalent to 10 wavelengths defocusing aberration for a 
telescope working at f/6. 

On Cassegrain-type catadioptrics, it is less obvious how to tell which 
direction focus is tracking or how far it moves. These instruments usually 
achieve focus not by physically transporting the eyepiece, but by internally 
moving the primary mirror toward the secondary. First, focus the telescope with 
an eyepiece sitting firmly in its socket. Then, loosen the eyepiece and draw it 
10 mm or so outside of the socket. Now, tighten the set screw. Find focus once 
again, being aware of the direction and angle that you have turned the focuser 
knob (it may help to stick a temporary pointer on the end of the knob). You 
have found the direction and amount of an effective 10 mm inward focus 
change. On my Schmidt-Cassegrain, this motion was counterclockwise. 

5.1.2    Sensitivity of the Star Test 
In the equations governing diffraction (Appendix B), defocus is added as a 

uniformly interfering term to the summation. The point where errors show 
themselves with highest sensitivity is right at focus because no defocusing term 
has been added to dilute the image. However, the focused image has two 
problems: 

1. You can't tell where on the surface the error originated. 

2. The way the error is expressed is in the intensity of the diffraction 
rings. 

A good example is the degradation caused by a secondary mirror. Light has 
been kicked from the center of the focused image into the rings, but you can't 
tell why by peering at the focused image. Furthermore, the human eye is not 
skilled in determining absolute intensities of the rings. Yet, by drawing the 
eyepiece a little out of focus, you see the shadow of the diagonal begin to 
appear. The shadow more-or-less follows its origins, and aberrations behave 
similarly. As you defocus the instrument, the light partially unmixes and you 
can at least guess at the difficulty causing the trouble. 

Unfortunately, if you defocus any image far enough, it will look the same 
regardless of the extent of the error—a flat, uniform disk of light with 
obstructions clearly delineated. Even the spider shows itself if you defocus too 
far. The star test loses sensitivity with increased defocus. The light becomes 
completely unmixed. 

Our goal is to find an intermediate focus where the light has become 
slightly less entangled but is still mixed enough to show optical errors. 
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In my opinion, most optical errors are best shown at less than 8 to 12 
wavelengths defocusing aberration (a prominent exception is the presence of 
zones, which often are best seen when defocused further). 

What is the upper limit of sensitivity under ideal conditions? A photograph 
in Fig. 1-5 depicts the actual defocused diffraction pattern of a nearly perfect 
circular aperture. In the theoretical pattern of Fig. 1-4, the defocus was adjusted 
until the theory closely matched the photograph. Variations of only 1/50  
wavelength were enough to destroy the match. Even then, the photograph 
betrays slight differences caused by microscopic projections at the edge of the 
aperture stop, which had been made from punched metal. Under laboratory 
conditions, using monochromatic light, the star test can detect wavefront 
distortions of 1/50 wavelength peak-to-valley, an outstandingly sensitive 
measure. 

Welford (1960) stated that the star test was accurate to 1/20  wavelength for 
broad deformations of the wavefront and 1/60 wavelength for sharp variations. 
Welford's estimate matches the observations here. Later on, in Chapter 11 on 
zonal defects, it is noted that the star test is sensitive to sharp zones even in the 
presence of gross defocusing. Again, observation concurs with Welford's result. 

Field conditions will lessen this sensitivity considerably. Even so, the star 
test is more than adequate. Using light of more than one color and testing under 
less than optimal conditions, the slight spherical aberration of telescopes having 
total wavefront error of less than 1/10 wavelength is still quite easy to detect. 

5.2     Artificial Sources 

The star test is often performed in the field on a real star. However, for 
critical testing, you will find that an artificial source of light is convenient and 
less variable. Artificial sources are preferred for a number of reasons: 

1. You can, to some extent, control the brightness. 

2. With bright sources, the color can be readily altered and adjusted 
using filters. 

3. The close-in nature of the test allows less of the turbulent atmosphere 
to intervene. 

4. Since the source is fixed with reference to the telescope, it requires no 
tracking. If required, you can clamp the telescope down rigidly. 

The beautifully steady pattern that results from use of an artificial source 
will spoil you. There are some disadvantages, however: 
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1. The use of an artificial star usually demands a nearly horizontal telescope 
position. This places maximum demands on the optical mounting cells. 
Unusual astigmatism, misalignment, or warping may derive 
solely from the vertical position of the cell. 

2. Some of the recommended source placement distances listed in Table 
5-2 demand that you look through horizontal spans of 1600 feet (about 
0.5 km) although most entries in the table are much less. 

3. You need to make a point-like source of light. You must know the 
diameter of the pinhole to ensure that it is smaller than the resolution of 
your instrument. Unlike real stars, the source is not always 
guaranteed to be small. 

5.2.1    Distance of Artificial Sources 
A paraboloidal reflector is the perfect single mirror for light originating at 

astronomical distances. However, if the source is at a distance of only twice the 
focal length, a sphere is the perfect surface. At an intermediate distance, the 
ideal mirror is a prolate spheroid. Thus, three different forms do the best 
imaging at three different distances. A telescope could perform adequately 
when star tested with a nearby source yet fail when directed at the distant sky. 
Even worse, a fine telescope could be unfairly misjudged by failing the test on 
a source that is much too close. How much is the test disturbed if the source is 
placed nearby? 

The largest effect of using an artificial source close at hand is to induce 
spherical aberration in the system. In other words, when a perfect paraboloid is 
forced to peer myopically at a nearby source, it shows spherical overcorrection 
that is not found when directed skyward. W.T. Welford says the star test 
should be conducted with an artificial star placed more than 20 focal lengths 
away, but he also warns his readers to do accurate ray tracing of the optical 
system before it is used at questionably close source distances (Welford 1987). 
We can see below that Welford's suggestion of 20 times the focal length is a 
very good one for normal apertures and focal ratios, but it fails rather badly for 
fast mirrors. 

In the May, 1991, issue of Sky & Telescope, Roger Sinnott traced rays 
through paraboloidal mirrors and saw how close the source could be placed 
before unacceptable spherical overcorrection was noticed. This empirically-
derived formula, rewritten for the notation used here, is 
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where F is the focal ratio and D, the aperture diameter. This equation is rewritten 
to calculate the multiplier of the focal length: 
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The formula can be put in any unit system by pulling out the unit of wavelength: 
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By comparing a parabola and an ellipse that are tangent at the center and 
touching at the edge of the mirror and doubling the greatest difference, a similar 
result can be derived analytically. This results in the slightly different formula 

λ3128
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The difference is insignificant, and it probably occurs because Sinnott's 
program automatically accounts for the different angle of exit from a mirror's 
surface while the analytic calculation ignores this angle. Table 5-2 uses Sinnott's 
result because it leads to smaller separations. Even though it is numerically 
derived, it probably is more accurate for the low focal ratios of greatest interest. 
An example calculation: a 6-inch f/4 paraboloid has 1/4 wavelength of spherical 
overcorrection when directed toward a source placed at 63 feet (multiple of focal 
length: 31.5). The distances in this table induce approximately l/4 wavelength of 
spherical aberration in a Newtonian reflector (Sinnott 1991). 

Since the distances appearing in this table are only on the edge of optical 
respectability, readers are advised to double them for use in the star test. 
Wavelength enters in the denominator of Equations 5.5 or 5.6, meaning that a 
perfect mirror will appear less than 1/8 wavelength overcorrected with the source 
placed at such a distance. 

Don't fret if you are forced to position the source a few steps closer than you 
would like. In my years of telescope testing experience, few instruments 
possessed less than 1/8 wavelength total error on the wavefront. (Sadly, almost 
the same can be said for 1/4 wavelength.) 

Distances greater than Welford's empirical rule take place only for low focal 
ratios or large apertures. Most elaborate optical systems, such as refractors, are 
made in slower configurations. Twenty times the focal length will probably test 
these systems adequately. Indeed, the telescope with the highest chance of 
breaking Welford's rule will probably be the Newtonian reflector for which this 
table is calculated. 



5.2.   Artificial Sources 85 

Table 5-2 
Telescope-to-pinhole distances resulting in 

!/4 wavelength overcorrection error in paraboloids 
(multiples of focal length)  

Focal Ratio
4 5 6 8 10 15

D(in) D(mm)
2.  4 61 13 10* 10* 10* 10* 10*
3 76 16 10* 10* 10* 10* 10*

4.2  5 108 22 11 10* 10* 10* 10*
6 152 32 16 10* 10* 10* 10*
8 203 42 22 12 10* 10* 10*
10 254 53 27 16 10* 10* 10*
12.5 318 66 34 19 10* 10* 10*
14 356 74 38 22 10* 10* 10*
16 406 84 43 25 11 10* 10*
17.5 445 92 47 27 11 10* 10*
20 508 105 54 31 13 10* 10*
24 610 126 65 37 16 10* 10*

Values that will be less than 20 times the focal length (after doubling) are 
suppressed in the table and marked with asterisks. Such close source distances 
will stretch the focus outward more than 1/20 of the normal focal length of the 
instrument. As the focuser tube seldom allows such motions without running out 
of travel or seriously vignetting the telescope, such close source distances are 
not recommended if they can be avoided. 

In fact, a good policy before testing is to remove the eyepiece after focusing 
on the artificial source. Place your eye at the approximate focal plane and verify 
that the whole optical system is still in view (you may need to use a flashlight to 
illuminate the inside of the tube). If not, you've got to move the source farther 
away and try again. 

One trouble zone occurs in this table. In fast and extremely large mirrors, the 
tolerable distance increases explosively. For a 24-inch f/4 mirror, the source 
should be placed (after doubling) at a distance of at least 2016 feet (0.61 km). 
These huge instruments are comparatively rare, and more importantly, they are 
seldom tested for quality much beyond the diffraction limit. Large telescopes 
are used for light gathering power, so using the 1/4-wavelength distances in 
Table 5-2, undoubled, is better than not doing the test at all. 

If you are testing more ordinary instruments, twice the distance in the table 
is easily achieved. For the more common 12.5-inch f/5, the source distance has 
contracted to a manageable 354 feet (0.11 km). 

Even though Table 5-2 strictly applies only to Newtonian reflectors, we shall 
use it as a general guide for the star test. These distances, I believe, will be 
approximately valid for fixed optical systems in general. 
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Unfortunately, this table does not work where the focusing mechanism of 
the telescope itself damages the optical correction. This situation is common for 
Schmidt-Cassegrain telescopes that change the mirror-secondary separation to 
achieve focus. Happily, the source separation that leads to rays being diverted 
outside the Airy disk has been estimated by Rutten and van Venrooij. For a 200-
mm (8-inch) f/10 having surface shapes approximating those available in 
commercial units, the separation is approximately 48 meters, or 24 focal lengths 
(Rutten and van Venrooij 1988, p. 87). In the discussion on the Danjon and 
Couder conditions in Ch. 1, it was pointed out that simple spherical aberration 
shifts rays outside the diffraction disk at about 1/7 wavelength. Thus, a 
separation of 20 focal lengths would be adequate for an accuracy of at least 1/4 
wavelength, and about 40 focal lengths will test to far beyond the diffraction 
limit. 

One additional instruction for the reader: If you cannot measure the source 
distance because of intervening impediments, try to err on the long side. You 
cannot place the source too far away. If your Newtonian seems to have a smooth 
overcorrection error (undercorrection for refractors), put the source at a greater 
distance and test again before you conclude that the error is on the glass. 

5.2.2     Diameter of Artificial Sources 
We must carefully select a pinhole size in the artificial source so that it is 

smaller than the resolution of the instrument. On the other hand, it must be large 
enough to allow sufficient illumination to fill a defocused image with light. To 
calculate such a diameter, we extend the Airy disk radius to the distance of the 
pinhole. If that radius is chosen as the diameter of the source pinhole, we ensure 
that the source is no more than half of the angular extent of a point image. 

This calculation is done for distances twice those in Table 5-2. The results 
are listed in Tables 5-3a and 5-3b. A quick glance at these tables shows some 
pinholes that will be extremely difficult to make or measure. It is certainly no 
easy task to make accurate sizes of pinholes only 0.07 mm (or about 0.003 
inches) across. But these pinholes refer to unusual telescopes— a 3-inch f/5, for 
example. Twenty times the focal length of a 3-inch f/5 is only 300 inches (7.6 
m). It is relatively simple to use a pinhole 4 times as large (0.28 mm) and place 
it 4 times as far away (100 ft). The artificial source is still only a backyard away. 

The pinhole can be punched in aluminum foil. To check the pinhole's size, 
expand it in a slide projector. Use a projection lens of known focal length and 
place the projector a measured distance from the screen.  For 
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Table 5-3a 
Maximum diameters in mil meters li

for artificial sources  
Focal Ratio 

4 5 6 8 10 15
D(in) D(mm)
2.  4 61 0.07 0.07 0.08 0.11 0.13 0.20
3 76 0.09 0.07 0.08 0.11 0.13 0.20

4.2  5 108 0.12 0.08 0.08 0.11 0.13 0.20
6 152 0.17 0.11 0.08 0.11 0.13 0.20
8 203 0.23 0.14 0.10 0.11 0.13 0.20
10 254 0.28 0.18 0.13 0.11 0.13 0.20
12.  5 318 0.35 0.23 0.16 0.11 0.13 0.20
14 356 0.40 0.25 0.18 0.11 0.13 0.20
16 406 0.45 0.29 0.20 0.11 0.13 0.20
17.  5 445 0.49 0.32 0.22 0.12 0.13 0.20
20 508 0.56 0.36 0.25 0.14 0.13 0.20
24 610 0.68 0.43 0.30 0.17 0.13 0.20

Table 5-3b 
Maximum diameters in i ches n

for artificial sources 
Focal Ratio 

4 5 6 8 10 15
D(in  ) D(mm)
2.4 61 0.003 0.003 0.003 0.004 0.005 0.008
3 76 0.003 0.003 0.003 0.004 0.005 0.008
4 25 . 108 0.005 0.003 0.003 0.004 0.005 0.008
6 152 0.007 0.004 0.003 0.004 0.005 0.008
8 203 0.009 0.006 0.004 0.004 0.005 0.008
10 254 0.011 0.007 0.005 0.004 0.005 0.008
12.5 318 0.014 0.009 0.006 0.004 0.005 0.008
14 356 0.016 0.010 0.007 0.004 0.005 0.008
16 406 0.018 0.011 0.008 0.004 0.005 0.008
17.5 445 0.019 0.012 0.009 0.005 0.005 0.008
20 508 0.022 0.014 0.010 0.006 0.005 0.008
24 610 0.027 0.017 0.012 0.007 0.005 0.008

example, if a 75-mm projection lens is used and the projection distance is 5 
meters, the magnification is about 5000/75 = 66 power. The 0.28 mm pinhole 
is expanded to 18.5 mm by projection (somewhere around 3/4 inch). A check of 
approximate roundness finishes the inspection. Be careful that you don't leave 
the foil illuminated longer than a few seconds in the projection gate. It's like an 
oven in there, and a great deal of energy is being dumped into the metal. If you 
allow too much heat into the aluminum, your slide mount may burst into 
flames. 

You can effectively shrink a large pinhole down to a tiny one using another 
technique. If you have access to a good high-magnification microscope 
objective, you can image a large pinhole onto a small replica of itself. Here, 
place the large pinhole where the microscope's eyepiece normally sits (4 -6 
inches from the threaded end of the objective).  Shine light through the 
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pinhole and then through the microscope objective, in a reverse direction to the 
way that microscopes customarily process light. The microscope objective is 
pointed at the distant telescope and the source appears to be floating a few 
millimeters in front of the objective. For example, if a 1-mm pinhole is placed 
100 mm behind a 5-mm focal length microscope objective, the source appears to 
be diminished to about 0.05 mm. You can also use high-magnification oculars 
for this purpose (also used backwards), but microscope objectives are best. 

5.2.3     Using a Reflective Sphere Instead of a Pinhole 
Even if you have success with the painstaking manufacture of the tiny 

source itself, you must then attach it to a lamp or flashlight and focus some light 
through the tiny opening. Making a true pinhole source can be laborious, but 
there are easier ways of fabricating a source that works every bit as well. 

Since the star test is a supposedly easy technique for evaluating finished 
telescope optics, readers probably do not want to be given elaborate and difficult 
plans for constructing auxiliary equipment. Optical devices cannot often be 
reproduced without having access to the same lenses and other minor gadgets. 

Yet the problem of adequate point-source construction must be solved 
somehow. Astronomy popularizer John Dobson figures his mirrors using the 
star test. Glints and reflections viewed at great distances serve as the point 
source. He even claims to have performed the final test of one telescope using 
the reflection in a bird's eye. 

Using the glitter of the Sun in small spherical reflectors is an excellent way 
of achieving the requisite small size and dazzling intensity. Dobson very likely 
uses a variation of the device described below when a well-placed and patient 
bird is not available.2 

Conveniently, every year huge numbers of ideal spherical reflectors are 
made in the form of blown-glass tree ornaments. These balls are silvered on the 
interior and commonly available in sizes of 2.5 to 7.5 cm (1 to 3 inches). If we 
calculate the size of a bright light source reflected in such a decoration, we can 
use these devices to make tiny virtual-image pinholes of accurately known size. 
The derivation of the expression for the glitter size involves some 
straightforward but non-instructive trigonometry, so it has been placed in 
Appendix F. 

One important thing to notice from the derivation appearing in the 
____________________________ 

2 I do not recommend the star test as the sole method of testing during fabrication. It is best used 
as an independent check of workshop tests. The star test can be quite confusing when two or more 
types of surface deformation are contributing to the errors. 
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Appendix is that you don't have to do a trigonometric calculation every time 
you plan to use one of these spheres. You merely estimate that the glitter image 
will be less than about 1/300 the diameter of the sphere for an average solar 
reflection. If the light is reflected back toward the Sun (i.e., a nearly centered 
reflection appears in the sphere), the half-degree solar disk shrinks to about 
1/450 of the sphere. 

This ≈ 1/300-diameter approximation has certain consequences when viewed 
in the context of Table 5-3. We see a range of needed pinhole diameters from 
0.003 inches to 0.027 inches. Three hundred times these diameters are reflective 
spheres from about 1 inch (25 mm) to 9 inches (23 cm) diameter. The last 
sphere was calculated for a 61-cm (24-inch) f/4 reflector seen at a distance of 
615 meters (0.38 miles). It is in a very unusual corner of Table 5-3. In fact, the 
largest source point that will probably be required by most readers is for a 17.5-
inch f/4.5 reflector. It is about 0.016 inches (0.4 mm), which is the glitter size of 
the Sun in a 5-inch (125-mm) sphere. 

Table 5-4 gives approximate maximum dimensions of virtual pinholes for 
various sizes of reflective sphere where the source of light subtends 1/20 

(approximately the solar diameter). 

Table 5-4 
Approximate virtual pinhole 

maximum dimensions 
(light source is the Sun)  

sphere "pinhole" sphere "pinhole
(in) (in) (mm) (mm)
0.5 0.002 12.5 0.04
1.0 0.003 25 0.08
2.0 0.007 50 0.17
3.0 0.010 75 0.25
4.0 0.013 100 0.33
5.0 0.017 125 0.42
6.0 0.020 150 0.50
7.0 0.023 175 0.58
8.0 0.027 200 0.67
9.0 0.030 225 0.75
10.0 0.033 250 0.83

Few ornament bulbs are as large as 5 inches across. However, you can use a 
smaller glitter point. The reason so much care is taken with source size is 
because you're going to have to place that sphere 300 meters (about 1/5 mile) 
from your 17.5-inch reflector. That's a long way, and you want bright images. 

The sphere also need not be whole. A convex adhesive mirror, commonly 
available in automobile parts stores, is used for increasing the field angle of flat 
rear-view mirrors.  If you draw a circle that is the diameter of the 
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sphere you want, you can take it to the store and estimate which of these 
inexpensive reflectors most closely matches the circle. 

Partial sphere reflectors must be aligned so that the reflection is visible in the 
direction of your instrument, but this task is easy and it will last long enough that 
you can do an unhurried test. 

One last note: Other authors have recommended the use of black spheres 
because they obscure the reflection of the surroundings while still reflecting the 
Sun. Glossy black spheres diminish all light that strikes them. You could get an 
equivalent effect by using a neutral density 1.0 to 2.0 filter at the eyepiece 
(dimming not just the sphere, but the whole field of view). Using a glossy black 
surface may be a good policy during inspection of the dazzling image close to 
focus, but it is not productive when defocusing farther. If you must diminish the 
intensity, go ahead and do so with an eyepiece filter, but start with the brightest 
image possible. Alternatively, it is often convenient to have two spheres in close 
proximity, one smaller than the other (such as a shiny ball bearing next to the 
tree ornament). A check for small amounts of astigmatism, for example, is best 
done by rocking the focus very slightly on either side of the most compact 
image. The large sphere's image is often too bright and the smaller sphere serves 
well as a point source for small defocus. 

5.2.4     Setting Up a Nighttime Artificial Source 
You can arrange the same light reflection at night by providing your own 

illumination. Light no longer comes from a constant angle of the Sun, so care is 
required in arranging a lamp. Attach a flashlight on a photographic tripod or 
other adjustable support and direct it towards your sphere. The flashlight 
performs best when stopped down to about 1 cm and placed about 1 meter away. 
This procedure will approximate the 1/2° angular diameter of the Sun, so the 
tables above will work the same. You may achieve a tighter beam if you stop the 
flashlight down off-axis, so that the filament of the lamp is not directly visible. 
Use a flat sheet of aluminum foil to make the mask. The exit portal need not be 
perfectly round. The flashlight should be placed as near to the line of sight as 
possible. 

You might also wish to color balance the light more closely to the output of 
real stars. Coloring the source lamp is particularly useful when testing refractors. 
Most incandescent filaments have a black body color temperature of around 
2500°C, or as red as Betelgeuse. The spectrum should be filtered either with a 
pale blue (Wratten 80A) eyepiece filter or by filtering the output of the flashlight 
with a similar light blue filter (Berry 1992). An ideal filter corrects indoor 
lighting (i.e., "tungsten" light bulbs) for outdoor slide film. For most testing, 
though, you will prefer a single color, and the 
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reddish tinge of the flashlight is welcome. In fact, you may prefer to test in 
gold-colored spheres, which are also available as tree ornaments. 

Choose a site without stray sources of light. A daytime test can be conducted 
nearly anywhere because the Sun is the brightest light source, but a nighttime 
test can be compromised by the presence of street lights nearby. Your flashlight 
is still likely to be the most prominent source reflected in the sphere. After all, 
it's close and is directed right at the sphere. However, nearby interfering street 
lights provide secondary glitter points, and other glints may make interpretation 
difficult—particularly at very small defocus aberrations. 

Excluding stray sources of light is easy. For example, you could construct an 
"accordion" box to shade the sphere from all but lights in the direction of the 
telescope. This is a little cardboard box blackened on the inside and having a 
black poster board accordion-folded at the back. This folding acts as a non-
glossy beam dump. Most often, though, all that is really required is a carefully-
placed hood. Easier yet is to go where there aren't any spurious lights. Your 
usual observing site supposedly is a fairly dark locale. Just take the test 
equipment along. 

You have one luxury that daytime testers do not have: you can move the 
source closer to the sphere until the pinhole begins to exceed the Airy disk. In 
fact, this process is made easier if you form a square hole in the flashlight 
mask. Stop and draw the flashlight back a small distance when this squareness 
appears. 

5.3    Performing the Test 

Because people wanting to test telescopes don't usually have access to 
towers or convenient topography to elevate the sphere, they must test through 
ground turbulence. Daytime testing is probably best done during the early 
morning and over a grassy field, but different locations and times have their 
own behavior. Often, a quiet time of non-turbulent behavior can be found to 
briefly persist near sunset. Go ahead and try the test anytime and anywhere; 
you may be pleasantly surprised. Also, try to place the Sun at your back to 
shade the eyepiece and ensure an approximately round reflection in the sphere. 

You can mount your sphere in a stiff piece of poster board, poking the 
hanger through a hole cut in the board. If you don't use the board and wish to 
hang the sphere on a bush or a tree, then be sure to paint, tape, or otherwise 
obscure the hanger region of the ornament. It has nonspherical curvature that 
may present a second interfering point of light. If you are using a curved rear-
view mirror, be sure to obscure the edge if it is shiny. (See Fig. 5-1.) 
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Fig. 5-1. Spheres are illuminated by a large spotlight to exaggerate the glitter renection. A convex 
rear-view mirror is shown connected to the tripod head. The stray reflection points have yet to be 
obscured by tape. 

One might think that a black poster board would work best, but a uniform 
color of dark green also works well. The uniformity is more important than the 
color, although bright colors should not be used. 

Most telescopes require moderate distances, but large Newtonians of low 
focal ratio demand long, clear testing fields. Long distances that meet other 
requirements are sometimes hard to find. You may be able to locate straight 
stretches of country road, perhaps straddling a convenient valley. Be sure to set 
up your testing range over grass on the upwind side of the road. You don't want 
the heat from asphalt to disturb the test. Also, avoid optical paths that cross over 
building roofs. Public parks are ideal, since they feature large expanses of grass 
and might even be relatively deserted early in the morning. 

If your telescope has a thin mirror, be prepared for astigmatism. Think of the 
thin mirror as flexible. Upended, it sags. If your telescope has a heavy mirror 
(thick or thin), also anticipate some warping.   This is particularly 
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true if you aren't supporting the mirror gently in a sling, although it appears 
occasionally even then. 

Such patterns will not resemble the neatly symmetrical diagrams appearing 
in the pinched optics chapter because only two supports are likely to squeeze. If 
you can't eliminate this effect by careful mounting, you will have to test at 
elevated angles on real stars. 

You may find the alignment of the telescope is changed when the instrument 
is pointed at the horizon. Because optics are mounted loosely, try to set up a 
situation with a slight upward tilt of the optical axis. With luck, the optics will 
lean back to rest against their natural supports. Either choose a testing range 
with a natural upward slope or mount the source higher. At worst, you may 
need to do temporary fine-alignment for the test. One suspects that glass 
power-line insulators are so popular as curved reflectors only because they are 
conveniently mounted on towers. 

Then try a "snap test." Rock the focuser on either side of the sharpest image 
and see how difficult it is to set the focus. In the most desirable situation, the 
focus seems to snap into place, and no matter where you halt, you are always 
convinced that the limiting factor in focusing is your inability to stop your hand 
from turning precisely at the crispest image. (Much of this depends on the focal 
ratio and how steadily the telescope is mounted.) The least-desirable situation 
is one where the focus looks about equally good over a range of focuser travel. 
You drift through the region of best focus, unable to decide. Your hand-eye 
coordination is far from being the limiting factor (Suiter 1990). 
If your visual power of accommodation is strong, then you must provide a 
dominant field object to hold the eye's focus while you vary the focuser. A 
reticle on the field plane of the eyepiece provides such an object. If you have 
an illuminated reticle eyepiece of 12 mm or below for photographic guiding, 
you can use it (possibly with a good Barlow). If you don't have a guiding 
eyepiece, stretch a scrap of black electrical tape halfway across the field stop of 
a high magnification eyepiece (the stop is the hole on the underside). If you 
have placed the tape close to the best focus of the ocular, you will see half of 
the eyepiece's field occluded by a sharp-edged shadow. Place the point source 
image close to a straight edge of the artificial pattern. Your eye will naturally 
focus on the large, high-contrast edge. Then you can vary the image focus at 
will while the focus of your eye is held as if it were in a vise. This 
psychological trick is common in darkroom enlarger focusing aids. 

Look for individual aberrations following the instructions in the chapters 
that deal with them. In testing refractors for optical errors having nothing to do 
with color correction, you may find it helpful to use a deep yellow or green 
filter on the eyepiece. In fact, using a colored filter is a good policy for 
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all telescopes, whether reflector or refractor. Even though reflectors have no 
overt color errors, the star test still suffers confusion from the finite bandwidth 
of white light. For example, red light of wavelength 630 nm may be 10 
wavelengths out of focus, while deep blue light of wavelength 420 nm is 15 
wavelengths out of focus. A colored filter reduces the range of contributing 
wavelengths in the image. 

Another helpful tool is a 33% obstruction mask for your telescope. This 
provides a uniform obstruction for critical spherical aberration tests. A mask is 
easily made to fit over a reflector's spider. Just draw a circle one-third the 
diameter of your primary mirror on thin cardboard about the thickness of a 
manila file folder. Cut it out and fold it into quarters. Then cut a slice about 6 
mm to 10 mm long near the vertex of the "V" in the folded center. Open it back 
up, and smooth it out. The center cut becomes a cross. Fit it over the protruding 
rear side of the spider. A mask is not necessary on f/10 Schmidt-Cassegrains 
because their obstruction is about 33% anyway. A refractor mask can be cut out 
of paper. Suspend the obstruction on a web of sewing thread taped to the 
dewcap. Of course, if your obstruction is over 1/3 the aperture already, this 
option is not open to you. Such telescopes are usually specialty instruments 
anyway, for which the extra obstruction is accepted to secure some other 
advantage. 

As an example of how to use these tables from beginning to end, as well as a 
road map of the procedures and pitfalls you may encounter in star testing 
telescopes, the rest of the chapter describes the testing procedure for four 
imaginary instruments. 

5.3.1     8-Inch f/6 Newtonian Reflector 
We find in Table 5-2 that the source distance for 1/8-wavelength error is 

2×12f or 24 times the focal length of 4 feet. Multiplication yields a source 
distance of 96 feet (29 m). Table 5-3a or 5-3b says the source diameter is about 
0.10 millimeter, or about 0.004 inch. 

This pinhole diameter—multiplied by 300—indicates a solar reflection in a 
30-mm sphere. Since this is reasonably close to the 1-inch (25-mm) ornament 
bulb, we will use that. Don't do a lot of extra work matching these parameters 
precisely. You don't need to measure a 29-m testing range carefully. The 
sensitivity of the star test is not helped or hindered by this sort of precision. Pace 
the distance off; thirty-five steps should be enough. If the only available 
spherical reflector is 2.5 inches in diameter, you can easily go twice as far to 
about 200 feet (60 m). You are in control, not the test. 

The range is set up over a grassy lawn. It is about 8 A.M. with the sphere 
placed to the south-southwest.   The Sun is over the tester's left 
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shoulder. 
We note from Tables 5-la and 5-lb that the focusing travel necessary to 

achieve a defocusing aberration of 12 wavelengths is 1.9 mm (0.075 inches). 
The focuser withdraws 3/4 inch per rotation, so we will turn the focuser less 
than about ±1/10 of a turn for most aberration checks. 

The first thing you notice when viewing the defocused image is the seeming 
appearance of severe misalignment. When you set the telescope up, you 
checked the coarse alignment, and it was fine. You replace the sighthole 
eyepiece. The mirror's dot is still on the center. What is happening? 

Then you notice that the focuser is racked back 50 mm farther than usual. In 
fact, you had to dig in your eyepiece box to find the focus extender tube. You 
look in the sighthole again and this time see the problem. At this focus 
position, the edge of the diagonal mirror cuts off the outer portion of the 
mirror. The vignetting is a little worse on one side than the other, which 
explains the off-center diagonal shadow. The out-of-focus disk isn't really that 
far misaligned, it just isn't completely illuminated. 

You walk out to the sphere, pick it up, and take it another 30 steps farther 
back. Returning to the telescope, you put in an eyepiece and focus; it is about 
an inch closer to the tube. Pulling the eyepiece out and putting the sighthole 
back in, you can now see the whole mirror reflected in the diagonal. Offhand, 
you realize that you could have used a bigger sphere at this new distance. You 
decide to give this one a try anyway; it seems bright enough. 

This time you notice that the secondary shadow leans slightly to the left 
side of the defocused image. This appearance indicates real misalignment. You 
twist the appropriate screw on the primary mirror cell (see Chapter 6) and then 
check the image again. It's worse. Returning to the adjustment screw and 
undoing the previous adjustment, you give it a slight turn in the opposite 
direction. 

Checking again, you see much better alignment. A few more minor 
adjustments and alignment is finished. Collimation will probably have to be 
redone before the telescope is used on elevated objects because the tube 
assembly is unusually strained for this horizontal angle. At this point, you look 
for pinching or astigmatism. You see no such effects, but then this mirror is 
small, full-thickness, and gently mounted. 

Performing the snap test, you see that the image goes through focus rapidly. 
That's good news. You stare at the defocused image and try to detect a 
stationary pattern indicating surface roughness in the slight turbulence. You 
don't see any, but you will test for this condition later in the dark. It's difficult 
to detect roughness in any turbulence, even the slight amount troubling the 
instrument now. One good point is the smooth appearance of the diffraction 
minima; they would be coarse or broken if 
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roughness were severe. You put a yellow filter on the eyepiece. It seems as if the 
filter isn't deep enough because many colors can still be seen (in fact, color error 
seems worse). You put on a green filter. Now the minima are more visible. 

Roll the focus back and forth equal distances on either side of focus to look 
for spherical aberration. Recall that this is exhibited by a hollow center on one 
side of focus and a bright center that diminishes toward the edge on the other 
side. Some tendency in this direction is visible, but it is not severe. You put the 
standard 33% obstruction mask on the protruding bolt at the rear of the spider 
and very carefully find best focus. Then you see how far you have to move the 
focuser inward and outward for the shadow of the diagonal to appear equally at 
the center. The darkness appears almost instantaneously with inward focus, but 
it hangs up briefly with outward motion. 

This is a subjective judgement, so you replace the green filter with a neutral 
density filter to change conditions somewhat and try it again. Using a red filter, 
you obtain a fresh estimate. You remove all filters and try once more. It seems 
as if the average ratio of these motions is as large as 1:2 or 1:3. It may mean you 
have a marginally undercorrected mirror (see Chapter 10). 

Taking the mask off, you next defocus the instrument from far inside focus 
to far outside focus, all the while looking for dips or extra bright rings that 
would indicate zones. You see no tight circular structure. 

The last test is for turned edge. The way you normally look for this is to put 
on a deep-colored filter (red is good) and inspect the visibility of diffraction 
minima inside of focus compared with outside of focus. If turned-down edge is 
the only aberration, the rings are strong and crisp on the outside and weak or 
washed out on the inside. However, the effects of turned edge are competing 
with the effect of undercorrection, which also tends to wash out the diffraction 
rings on the outside of focus. You peer through the filtered eyepiece and can't 
really decide this point. One aberration fogs another. 

Assessment: This telescope should perform passably on the planets, but it 
could do better. It is right at the edge of specifications, so you shouldn't 
complain to the maker. The optics don't seem to be severely rough, but a test for 
roughness will have to wait for a dark field of view and less turbulence. The 
telescope was acquired for general-purpose use, a task it should perform well. 
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5.3.2    16-Inch f/4 Dobson-mounted Newtonian 
This telescope will require a larger separation from the source. Table 5-2 

indicates that a distance of 84 focal lengths will cause 1/4 wavelength of 
spherical overcorrection, so you double it and go to 168 focal lengths; 16 
inches × 4 × 168 = 10,752 inches, or 896 feet (273 m). The required pinhole 
size is 0.018 inches, or 0.45 mm. To use a reflection of the Sun will require a 
reflective sphere over 5 inches in diameter. 

You cannot find a suitable sphere in the tree ornament box, so you go to the 
automobile parts store and examine the adhesive wide angle rear view mirrors. 
A small mirror found there would seem to be about 7 inches in diameter if it 
were a complete sphere. It's a little too large, but close enough. Remember, 
you have a factor of two in the pinhole diameter table before your source 
exceeds the Airy disk size. 

You tape over the outer few millimeters of the mirror because of a 
secondary reflection in a shiny bezel. You use masking tape because the color 
really doesn't make any difference. Looking around for an adjustable 
mounting, you think of a cheap camera tripod with an adjustable ball head. A 
scrap of wood attached to that tripod head will hold the curved mirror. 

Then the search for a test site begins. You finally find a long upslope to the 
north. It is crossed by a road, which could give some trouble with turbulence, 
but you're willing to take a chance. You set up the source tripod at 9 A.M. on 
the high end of the slope. Going a few steps in the direction of the telescope 
and dropping your head to the sight line, you make sure the Sun is centered in 
the curved mirror. Also, you check the tripod for spurious reflections and tape 
over any prominent gleams. 

Go downslope about 2/10 mile (or 0.3 km) and set up the 16-inch. A quick 
look in the 6-mm eyepiece confirms that the optical path is seriously disturbed 
by turbulence (it's too late in the morning). You give up and decide to attempt 
the test during a night session at your observing site. This way, the telescope 
is likely to be operating in a less turbulent environment. 

About 9P.M. the very next night, high cirrus clouds move in and ruin the 
view. You decide to test the mirror and hope, in the meantime, that the clouds 
go away. Driving along the gravel access road that leads to the site, you again 
place the sphere about 0.3 km away. This time, however, the tripod is carrying 
the flashlight, so the sphere is hung from a pasture fence. The flashlight has a 
1-cm hole in the mask, and it is placed about 1 m from the partial sphere. You 
locate it just off the optical path between the sphere and the telescope, so you 
will obtain a small, round reflection. 

Since the path is closer to level, the telescope might lose alignment as it is 
heeled over. Looking at the sphere, you find that indeed it has lost 
collimation. As you raise the telescope toward zenith, you shake it gently, 
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and ease it back down. That cures the problem. 
You then inspect the image for pinching and astigmatism. The image does 

tend to form a cross at focus, but it's not so bad that it will interfere with the 
important test for spherical aberration. 

In the snap test, the image does not focus as rapidly as you would like. 
However, you can readily focus your eyes from 100 mm to infinity, and suspect 
that your accommodation makes the snap test unreliable. You replace the 6-mm 
eyepiece with a 12-mm illuminated reticle eyepiece on a high-quality Barlow 
lens and repeat the snap test, all the time being watchful that the crossed wires 
of the reticle stay sharply in focus. The focus is still indeterminate over a 
significant region. That's not good. 

Attaching the 33% mask to the back of the spider, you check the correction. 
The shadow appears almost at once on the inside and remains big and dark until 
the telescope is grossly defocused. It doesn't emerge on the other side until you 
twist the focuser 6 to 10 times farther, after which it emerges from a bright core. 
Filters alter this situation only slightly. The mirror seems profoundly 
undercorrected. 

You have a dark suspicion that the large sphere size is perhaps dazzling your 
vision. Returning to the source, you increase the distance separating the 
flashlight and the sphere to 2 m. Even with the darker image, the severe 
undercorrection still shows. 

The rings aren't visible on either side—possibly because of roughness or 
turbulence. Rings don't appear with a green filter either. One test does not decide 
roughness, however, especially with as large an instrument as a 16-inch, so you 
reserve judgement about that point. 

Undercorrection is so bad that you don't even look for turned edge or zonal 
aberration. 

Assessment: The telescope fails. It needs to be refigured. If it were even a 
little worse than a marginal 1/4 wavelength, it would be acceptable. After all, 
you don't often expect diffraction-limited optics at f/4. But this instrument is far 
beyond the limits of acceptability. 

5.3.3     6-Inch f/12 Apochromatic Refractor 
Because this telescope is expected to perform well under the most difficult 

circumstances, it will be tested in a comparatively harsh manner. Twenty times 
the focal length is 120 feet, or 37 meters. To avoid vignetting from the baffling 
and to avoid an erroneous estimate of spherical aberration, you will push this 
distance to 80 m. Interpolating Table 5-3, you see that a pinhole diameter of 
about 0.16 mm would be correct at 37 meters, but you're going twice that far, so 
you want one twice as large. Three hundred pinhole diameters of 0.32 mm 
yields 96 mm, or about 4 inches. 
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You only have a 50-mm tree ornament, but since you will be doing this test 
at night it's easy to move the 1-cm masked flashlight to about 60 cm from the 
sphere instead of the usual 1 m. The 60-cm distance means that the hole will 
subtend a little less than a 1° angle as viewed from the sphere. You back the 
flashlight mask with an 80A "tungsten" camera filter in order to achieve better 
color balance for the chromatic aberration tests. 

Taking the telescope to your usual observing site, you hang the sphere 
about 250 feet from the telescope. The flashlight is pointed at the sphere from 
a couple of feet away on the near side. Because the fully assembled telescope 
is inconveniently high when directed toward the horizon, you place it between 
the seats of two sturdy "movie director's" folding chairs. You will sit on the 
ground. 

You attempt to point the telescope by moving the rear chair. The telescope 
is directed at the feet of the tripod, so you elevate the front by slipping in a 
magazine. The sphere is now slightly too low. 

It seems easier to move the target than the telescope, so you walk to the 
source and move the sphere higher. You rearrange the flashlight, verifying that 
the brightest reflection is back toward the telescope. 

The image needs only a jiggle to center it. You slip in a higher mag-
nification eyepiece. The first thing to examine is color correction. The disk has 
a slight magenta or reddish fringe inside focus and a green fringe outside 
focus. In focus, there is no apparent color haze. No red dot appears just outside 
of focus, but since you are testing an apochromat, none is anticipated. 
Rainbow smearing is not apparent in any direction, which indicates that 
decentering or wedge error is absent. A brighter image would be helpful, so 
you move the flashlight to about 30 cm from the sphere. 

Now, the Airy disk is noticeably bloated, but no color haze is visible. You 
return to the flashlight and move it back. 

Putting a green filter on the eyepiece, you look for astigmatism or 
stretching as an indicator of misalignment. None can be seen. Defocusing 
either way, no apparent difficulty with correction appears. The telescope snaps 
well. You defocus a long distance and look for zones. None are seen. Turned 
edge doesn't show, but this is a refractor. The lens cell obscures the far edge. 

You are disturbed by the lack of contrast in the diffraction rings. This could 
indicate a problem with roughness. Then again, your eye just may be 
unaccustomed to the delicacy of the rings. You put in a deep-red filter, but 
that cuts out too much light, so you turn once again to the green filter. 

The in-focus image seems to have several asymmetric thickenings in the 
rings, but that could be caused by slow-moving air currents between the 
image and you. You watch long enough to decide that the pattern is fixed. 

Centering the 33% paper obstruction on the sewing-thread web, you 



100 Chapter 5.   Conducting the Star Test 

search for small correction difficulties. You are unable to detect any difference. 
Assessment: This telescope may suffer a slight medium-scale roughness, 

which would compromise the images on perfect nights. Such a small amount of 
aberration would have gone unnoticed in the other instruments. Nevertheless, it 
is worrisome in a lunar-planetary refractor. However, you decide to do the 
formal star test again and evaluate it a number of nights on planetary images. 
Roughness is a difficult aberration to unambiguously separate from turbulence, 
and you could have misdiagnosed it. 

5.3.4     8-Inch f/10 Schmidt-Cassegrain Catadioptric 
To test this Schmidt-Cassegrain, recall that the telescope diverts rays beyond 

the edge of the Airy disk at about 48 m (157 ft), or about 24 times the focal 
length. (Table 5-2 results in an incorrect distance because the internal focusing 
mechanism compromises the optical correction.) You decide to increase 
separation distance to at least 100 m (328 ft). A source at this range is 2.5 times 
the 20 focal lengths recommended after Table 5-2, so it requires 2.5 times the 
0.134-mm pinhole size of Table 5-3, or 0.335 mm. The reflective sphere should 
thus be 100 mm in diameter. You don't have a 4-inch sphere, but you can find a 
convex mirror that would be 7 inches in diameter if it were a complete sphere. 

The pinhole can expand a factor of 2 before it exceeds the Airy disk size. 
Seven inches, though, is a bit close to the limit. Then you recall that if you test 
with the Sun directly to your back, with the glitter point centered in the sphere, 
the divisor is closer to 450 than 300. This condition would permit a sphere at 
least 6 inches across, and 7 inches is not too much more. 

You set up the test early one morning with the Sun low on the eastern 
horizon and the sighting range to the west. A quick look in the eyepiece 
confirms that the image is too bright. After hurrying inside to get a 2-inch tree 
ornament, you set the new sphere at a range of 70 meters and point the 
instrument again. A peculiar tube current elongates the secondary shadow on 
one side of focus, but it goes away after a few minutes. 

First comes alignment, a relatively straightforward operation since it 
involves only adjusting one element. Slipping on a deep-yellow filter, you do 
the snap test, but you can't say for sure whether the instrument snaps adequately. 
Focus seems soft, but not seriously defective. 

You detect a small amount of spherical aberration, but you can't tell if it is 
undercorrection or overcorrection. The telescope is refocused with the regular 
high magnification eyepiece and yellow filter, the set screw loosened, and the 
eyepiece withdrawn 1/5 inch (5 mm). Checking Tables 5-1a and 5-1b, you see 
that this amount corresponds to about 12 wavelengths outside 
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focus. The edge of the pattern is stronger than the inside, so the system is 
overcorrected. 

Since a 33% obstruction is already in place, you look for the first ap-
pearance of the secondary shadow. It appears only about 1.5 times as far on the 
other side. Since the instrument is expected to appear slightly overcorrected 
anyway (with the close source position), this amount is very mild. 

In looking for roughness, you find an unusual amount of turbulence even 
this early in the morning. You'll have to test again when it is quieter. 

Assessment: The instrument shows signs of being excellent, but ground 
turbulence is too severe. Observation of the planet Saturn that night showed 
Cassini's division looking sharp and black between bouts of bad seeing. You 
will try the test again at night using a flashlight source. 



Chapter 6 

Misalignment 

A straightforward way of greatly improving a telescope's image is to align 
the optics. One of the most ignored optical problems, misalignment is also one 
of the most curable. The improvements derived by aligning previously 
neglected instruments are always noticeable, and sometimes the enhancement is 
startling. 

The star test cannot only be used to diagnose misalignment, it is also useful 
to achieve fine alignment. Once you become familiar with the star-test method 
of making that last small adjustment on the collimation, you will make it a 
standard procedure during every observing session. With practice, star-test 
alignment becomes easy. 

6.1    Kinematic View of Alignment 

An optical surface is a three-dimensional object of finite size. To locate 
such an object in space, one must first find some point (usually its geometric 
center) and move that point's three linear coordinates. Once its center is placed, 
two remaining orientation angles must be fixed to specify its position. 
Actually, mathematicians describe three such rotation angles, but symmetry 
usually allows one to be ignored. For alignment, this hidden angle is a final 
pointless rotation around the symmetrical optical axis. 

The three coordinates of the center as well as these three angles make up the 
six degrees of freedom necessary to know the position and orientation of a 
solid object precisely. The mounting points are well designed if they are 
sufficient to fix the object's location but not to overconstrain it. Three-legged 
stools are stable on the roughest floors because their three-point design is both 
necessary and sufficient. Stiff four-legged stools usually rock because the 
design has too many supports. The fourth leg cannot be precisely made to 
occupy the plane of the floor.   This difficulty also ac- 
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counts for the reason that optics mounting cells are so often multiples of three 
points. 

Alignment is usually separated into two independent tasks. First, the centers 
of all optical elements are placed on a single axis line and properly spaced. 
Second, the tilts of each optical element are oriented so that each becomes a 
circle of revolution around the axis. Thus, if one twirls the optical system around 
the axis, it looks the same. The placement of the center on-axis is called 
centering, and obtaining the correct tilt orientation is called squaring-on by 
some authors.1 

6.2     Effects of Misalignment 

If alignment isn't precise, any number of bad effects can result. Although we 
will calculate patterns only for misaligned Newtonian reflectors, the behavior 
depicted here qualitatively describes a wide variety of systems and is generally 
useful. 

Off-axis, a Newtonian reflector exhibits a mixture of two pure aberrations, 
coma and astigmatism. In this case, astigmatism isn't ground into the glass 
permanently. It is caused by viewing the mirror at an oblique angle. Similarly, 
coma is induced merely by the tilt of the mirror. 

As misalignment worsens, astigmatism overtakes coma to become the 
dominant aberration. Coma worsens linearly with collimation error, while 
astigmatism increases as the square of the distance to the optical axis. This 
behavior is illustrated in Fig. 6-1. For all practical cases of misalignment, the 
crossover point is always beyond the level of even coarse alignment. Coma is 
always stronger than induced astigmatism for Newtonian telescopes. 

The bright parts of a comatic image develop wing-shaped appendages, and 
some of the light is smeared away from the optical axis. Coma effects are the 
same inside or outside focus. In each case, the aberration stretches the image 
away from the optical axis. 

Misalignment of the image in Newtonians is easier to perceive outside of 
focus. The skewed optics no longer have a centered obstruction, and outside 
focus the off-center shadow of the diagonal adds to the stretching caused by 
coma. The offset shadow makes coma seem even worse. Inside focus, the off-
center shadow leans in a manner that partially counterbalances the coma stretch. 
Alignment on either side of focus is possible, but the preferred method is to pull 
the eyepiece back. 

Astronomical telescopes have such a constricted field of view that coma 
caused by the objective is generally not visible unless the optics are mis- 

__________________________________ 
1 Tilted-component telescopes don't follow such a simple sequence. They require a procedure 

matched to the particular instrument. 
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Distance off-axis 

Fig. 6-1. Astigmatism and coma aberration as misalignment becomes worse in Newtonian reflectors. 

aligned and the image is viewed at high magnification. Any off-axis smearing 
of the image in low-power eyepieces is primarily a fault of the ocular. 

Unfortunately, coma and astigmatism in composite form are common errors 
in poorly collimated Newtonian reflectors and catadioptrics. Well-designed 
refractors and advanced reflectors use the multiplicity of surfaces to reduce or 
eliminate the coma error. Good refractors chiefly show misalignment through 
astigmatism. 

Alignment is probably the single greatest contributor to the undeserved 
shabby reputation of Newtonian reflectors. These instruments are commonly 
made at very low focal ratios. Their owners don't realize their telescopes must 
be kept in razor-sharp alignment. A fast Newtonian usually spends its entire 
existence in a wretched state of collimation. Of course, if low magnifications 
are used, the zone of excellent alignment will usually be found somewhere 
within the field stop of the eyepiece. However, at high magnifications (where 
optical quality must be at its best), the focal-plane region of good quality can 
be at one edge of the field stop or possibly outside it entirely. 

As an example, let's look closely at the common 10-inch (250-mm) f/4.5 
Newtonian reflector. Schroeder (p. 96) says that f/4.5 paraboloids can tolerate 
misalignments of about 1.8 arcminutes. Superb images are thus confined to a 
region at the focal plane only 0.05 inches (1.2 mm) in diameter. This tolerance 
is a bit tight, however. "Decent" imaging would allow a misalignment of about 
3 arcminutes, a circle on the focal plane of 0.08-inch (2 mm) diameter.  The 
passable region is a circle 1/5 the diameter of the 
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full moon.   This alignment is ruined with only about χ/ιο turn of a main mirror 
adjustment screw.

 
Fig. 6-2. Aberration function of misaligned wavefront just after it has passed through the aperture. 

6.3     The Aberration Function of the Misaligned Newtonian 

If focused near the smallest image blur circle, the aberration function of 
misalignment is similar to the complicated form that appears in Fig. 6-2. That 
figure scarcely does justice to the deformation. The phase surface is like a 
drumhead that has just taken an enormous off-center blow. One half-circle is 
deformed downward, and the other half-circle has a balancing bulge upward. 
Added to this form is a small amount of the saddle or potato-chip deformation 
characteristic of astigmatism. The aggregate result is a wonderfully interesting 
surface to investigate by calculations, but it is bad news if it describes the 
wavefront of a telescope. 

The functional form of the coma aberration is 
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coma
AW                                 (6.1) 

where ρ is the distance from the optical axis (normalized to reach 1 at the edge 
of the aperture),         is the total coma aberration, and θ is the angle from the 
axis of misalignment (Born and Wolf 1980). The slight amount of astigmatism 
mixed with this coma has the form appearing in Chapter 14, and the total 
deformation is                               . The amounts of each aberration depend on 
the aperture and the focal ratio. 
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10-inch (250 mm) f/4.5

Fig. 6-3. Modulation transfer function of steadily worsening Newtonian alignment (45° orientation 
of MTF target bars with respect to the direction of misalignment). 

6.4    Filtration of a Misaligned Newtonian 

Since the phase surface is not axially symmetric, its MTF depends on which 
way the stripes of the MTF target are oriented. If we calculate the MTF at an 
average orientation, we can see how the behavior improves with better 
collimation. Five curves are depicted in Fig. 6-3. The first is the perfect 
circular aperture. The next is a 30% obstructed but otherwise perfect aperture. 
Third is the filtering caused by a shift of the focal plane sideways by the 
generous 3 arcminute tolerance. If this shift is doubled, the contrast sags 
considerably in the fourth curve. The last and bottom curve is the transfer 
expected from a severely misaligned mirror. Any alignment effort whatsoever 
results in better collimation than the last curve, but some Newtonian owners 
are so frightened of producing worse performance that they refuse to touch the 
adjustment screws. 

The worst MTF curve dips quickly. The interesting behavior is found low 
on the spatial frequency axis. The initial drop indicates that the telescope is 
performing as well as a perfect aperture of about 1/4 the full diameter. Severe 
misalignment reduces the low spatial frequency contrast to that of a 2.5-inch 
telescope! 

Even correcting the misalignment until the axis is tilted by twice the 
tolerance only improves the contrast so this mirror acts like one of half its 
aperture. This MTF curve is about the same as would occur for a 50% or 
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60% obstructed aperture. No one would stand for such huge obstructions, but 
many telescope owners casually accept misalignments of this magnitude. 

The filtration of even a slightly misaligned telescope is enough to severely 
degrade the images. Be fearless in attempting to collimate your telescope. You 
can hardly do worse than an unaligned instrument, and the potential 
improvements obtained with only a small effort can be profound. 

6.5     Aligning Three Telescopes 

The alignment procedure for every commercial telescope cannot possibly be 
described because each maker has tiny variations in the manufacture of cells, 
mirror holders, and adjustment hardware. For this reason, we will examine the 
generic features of the process used in aligning only three common telescopes. 
In spite of this restriction, the descriptions which follow represent a large 
number of optical systems. You will not be given detailed instructions in the 
form of a recipe to be learned by rote ("then turn bolt A"). That job is best 
served by the instructions that came with the instrument. Instead, you will be 
taught procedures that can be applied to nearly every telescope. 

Other collimation procedures use specialized methods or tools. Pussy 
readers are encouraged to pursue them. However, the instructions below 
produce reasonably straightforward collimation without cutting too much into 
valuable observing time. The justification and ordering of the steps will be the 
primary objective, with side comments concerning tricks and pitfalls. 

1. Establish the axis line. The axis line is defined by two points, usually 
the center of the eyepiece and the center of the objective lens or 
mirror. It is customarily directed along the tube's center. 

2. Center the optical components on this axis line. If the telescope has 
more elements than an objective and eyepiece, at least one non-trivial 
centering must take place. Sometimes, centering is set at the factory 
and is not adjustable by the telescope user. 

3. Establish the tilts of the elements. Generally, the tilt adjustments 
must be made in a certain order from one of the two points that 
define the axis to the other point. Poor ordering makes alignment 
much more difficult. 

4. Repeat steps 1, 2, and 3 as an iterative procedure. Because the ad 
justments are seldom completely independent, one alignment step can 
disturb previously correct settings. Coarse alignment is like raking 
leaves. The first pass doesn't gather every leaf; it takes a few swipes. 
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5. Adjust only one element in fine alignment. Fine alignment takes place on a 
real image. Normally, a tiny adjustment must be done on the element for 
which adjustment is most convenient. 

Although it is not strictly necessary, you can save time and effort by using a 
helper to align. On all but the most compact telescopes, collimation is a job 
best done by two people, one at the eyepiece and one making adjustments. 

6.5.1    The Newtonian Reflector 
The presence of the diagonal mirror and the many confusing reflections 

make this adjustment the most difficult of the three discussed here. 
Before the alignment begins, you have to make preparations. The first item 

needed is a centered sighting hole. This blank or lensless "eyepiece" has a 
small opening at the back instead of a lens element. The purpose of such a 
device is to allow you to unambiguously place your eye on the axis of the 
focuser tube. A less obvious purpose is to allow you to sight from a location 
right at the focal plane. It obscures the view unless the eye is placed close. 
Thus, the eye can be located not only at the center of the focuser tube but at the 
correct distance from the diagonal. You want to place this sighting hole near 
the location of the focal plane when the telescope is focused on distant objects. 

An inexpensive source of these sighting holes are clear plastic 35-mm film 
cans with the bottoms cut out and a 3-mm hole drilled into the lid. Wind them 
with a few turns of tape so they will they fit snugly. 

The second preparation is to place a marker dot at the geometric center of 
the mirror. Taking care not to touch the mirror's surface accidentally, lay a 
stiff ruler across the diameter. Along the ruler, you can determine the center 
very precisely, but at right angles to it, you can only estimate. At the center, 
draw a short (3 mm) line at a right angle to the straight edge. The center will 
be at some location along the direction of this stubby line. Do the same after a 
quarter turn of the mirror. Look closely at the center. What you should see is 
two short lines slightly offset as in Fig. 6-4. The true center is at the 
intersection of these two lines if they are extended until they meet. This is the 
place to put the dot. 

Don't commit yourself to making a large dot at first. It's best to make a 
barely perceptible mark at this location and measure it both ways to verify it is 
the center. When you make a bigger mark, you will probably want to extend it 
out on one side to correct for the inevitable error. This dot can be something 
as simple as permanent black marker ink or as elaborate as white paint.   
(Some people claim a white dot is easier to see when you 
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Fig. 6-4. The procedure for Ending and marking the true center of a circular disk. 

are attempting alignment in the dark with a flashlight.) Make the dot large 
enough to see easily (6 mm or 1/4 inch). Do not worry about the dot or short 
lines interfering with optical quality. The marks are in the shadow of the 
diagonal mirror. 

Steps 1 through 3 are best done in a brightly lit room illuminated by diffuse 
light. (Fluorescent light is ideal.) The inside of a telescope tube is not a well-lit 
place. During coarse adjustment, tape a sheet of white paper inside the tube 
across from the focuser. The paper will provide a lighter background to the 
outline of the diagonal holder than the normally darkened interior of the tube. 

Step 1: Establish the axis line. 
The axis line will be from the center of the eyepiece's field of view to the 

center of the mirror. This step would be trivially easy were it not dependent on 
the right angle break that happens at the diagonal. Once the diagonal is aligned, 
it will be simple to check, but it is impossible to verify now. We instead pay 
attention to one crucial fact, the need for the focuser to slide the eyepiece 
linearly along the optical axis, thus making sure that both your eyepiece and 
Barlow lens will be on this axis. A misaligned Barlow is a disaster for those 
who must wear eyeglasses, since the Barlow and medium-power eyepiece are 
used in preference to extremely short-focus eyepieces. 

We will assume that the optical axis will be along the center of the tube and 
that the diagonal will be set precisely at 45°. The problem of focuser motion 
reduces to making sure the focus tube is pointed at the tube's center line and 
that it doesn't lean toward either end of the tube. If you have an 
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accurately round tube and the focuser fits snugly against it, you probably 
needn't worry, but such instruments are rare. 

I can't give instructions for measuring the lean of the focuser because every 
situation is different. I can only point out some tricks for magnifying the lean 
direction. The first is to put something besides the eyepiece in the focuser. A 
good choice is a long tube the same diameter as an eyepiece. We will call it the 
"long eyepiece." If you extend such a tube on the outside of the focuser, it will 
become easily apparent if it leans toward either end of the tube. Make a right 
angle template out of a manila file folder or other thin cardboard sheet. Cut out 
enough of the corner so that it clears the focuser hardware, and lay it against the 
protruding tube. Any lean of the focuser along the telescope tube becomes 
immediately apparent. 

Remove the diagonal, and extend the long eyepiece to the center of the 
telescope tube, or as near as you can get. See if the long eyepiece is pointed at a 
skewed position to either side of the telescope axis. This step is especially easy 
if your Newtonian has a spider. Just place a pointer or screw in the hole from 
which you removed the diagonal holder and look through the other end of the 
long eyepiece tube. Of course, center the spider first. 

Once you've verified that your focuser fits squarely on the telescope and 
advances and retracts eyepieces more-or-less along the planned direction, you 
are ready to continue. If the fit is skewed, shim the focuser until it points 
squarely at the center of the tube. 

Step 2: Center the optical components along the axis line. 
Since the axis will go through the center of the mirror and the center of the 

image plane wherever they might lie, "centering the components" means 
centering the diagonal along that line. Remember, diagonal placement is 
achieved without any reference to reflections. At this stage, the main mirror 
need not be inside the instrument. The diagonal could well be a block of 
cement. In fact, it is helpful to think of it as nonreflective. You must suppress 
any urge to center the reflections you see in the diagonal. That doesn't concern 
you now. 

Consult Fig. 6-5. This diagram represents a perfectly aligned Newtonian. 
(Focal ratio has been exaggerated to make the anomalous behavior readily 
visible.) Note that the distance dnear is greater than dfar. Alignment is perfect by 
definition, yet it seems as if the diagonal mirror is not centered. Already we 
seem to violate general condition 2. 

Most importantly, the components must be optically centered, not phys-
ically centered. When you look through the little sighting hole replacing the 
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Fig. 6-5. A perfectly aligned Newtonian telescope with focal ratio about 1.75. Displays centered and 
non-centered features. 

eyepiece, what do you see? The diagonal should appear as a perfect circle 
neatly centered at the bottom of the focuser tube. The offset is caused by 
perspective foreshortening of the far side of the diagonal. It is so much further 
away, that it actually appears smaller. You need to slide the diagonal sideways 
and down to center it on the converging cone of light. The view through the 
sighting hole is sketched in Fig. 6-6. 

 
Fig. 6-6. Centering of the diagonal at the bottom of the focuser tube. (This tube is depicted as the 
dark annulus at the outside with gray radial streaks in it.) a) An improperly placed diagonal, b) The 
correct position as a result of a backward slide of the diagonal holder. A light piece of paper is 
attached across the tube. 

The amount of forward offset is determined by trial-and-error. Move the diagonal 
forward and back until it appears centered. Please note that the word "appears" is 
emphasized in this statement. Because judgement may be difficult, you may be tempted 
to remove the sight hole and peer 
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along the focuser tube at a grazing angle. Then you would incorrectly compare 
the front and back sides and incorrectly set the diagonal. The correct method is 
to view it from the center and move the diagonal until it only looks centered. 

You may detect an error in the "up-down" direction of Fig. 6-6. That error is 
probably caused by an undetected tilt in the focuser or a side shift of the 
spider. Adjust for it either by shimming the focuser or by moving the spider 
before continuing. Figure 6-6b shows a properly centered diagonal. 

The amount of offset of the diagonal away from the eyepiece is impossible 
to judge just by looking. It must be calculated and measured until the 
quantities dnear and dfar are correct. This offset can be straightforwardly 
calculated using analytic geometry. (Such a derivation appears in Appendix 
C.) Here is the answer and some easy approximations: 

If D is the diameter of the mirror, L the diameter of the field of 100% 
illumination, Τ the distance from the center of the tube to the focal plane, f the 
focal length, and s the sagitta of the mirror surface , then the )16/( 2 fDs ≅
offset is 

    where    .                              (6.2)          

           

For a very small field of 100% illumination and a shallow mirror, this is 
approximately. 

                                                                                     (6.3) 
 
where F is the focal ratio. 

Say you have two equal stacks of coins. If you remove one coin and place 
it on the other stack, the stacks differ in height by two coins. For the same 
reason dnear is larger than dfar by twice the offset. A number of estimates for dnear - 
dfar are listed in Table 6-1. These typical offsets are generated by using Eq. 6.2 
with reasonable estimates for T. 

At long focal ratios, the offset is very small, so use of this table should only 
be critical in its lower left corner—for fast and big mirrors. For that reason, 
the approximation in Eq. 6.3 is more than adequate. Optimally, fast 
Newtonians should be designed with very small regions of full illumination at 
the focal plane (Peters and Pike 1977). 

Most spiders can be adjusted to allow the diagonal to be offset deliberately 
merely by changing their mounting-screw adjustments. Do not worry if the 
vanes on opposite sides of the diagonal are not precisely lined up. This 
condition only modifies the spider diffraction pattern. The amount of light 
scattered by the spider is the same as before. In a way, the spider diffraction 
pattern with 8 less-bright spikes may be better than 4 strong ones in some 
observing circumstances. 
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Table 6-1 
The difference between the two measurements from the tube  

to the edge of the diagonal, dnear — dfar = 2 Offset 
Field of 100% illumination is zero  

Diam ter (in) e Τ
3 3.5
4 5 .2 4.4
6 5.6
8 7.0

10 8.4
12.5 10.2
14  .25 11.4
16 12.6
17 5 . 13.6
20 15.4
24 18.2

  
Diameter(mm) Τ 

75 90
110 110
150 140
200 180
250 210
320 260
360 290
400 320
450 350
500 390
600 460 

 
Focal Ratio

4 4.5 5 6 7 8 10
2 Offset (in) 

0.11 0.09 0.07 0.05 0.04 0.03 0.02
0.14 0.11 0.09 0.06 0.04 0.03 0.02
0.18 0.14 0.11 0.08 0.06 0.04 0.03
0.22 0.17 0.14 0.10 0.07 0.05 0.04
0.26 0.21 0.17 0.12 0.09 0.07 0.04
0.32 0.25 0.20 0.14 0.10 0.08 0.05
0.36 0.28 0.23 0.16 0.12 0.09 0.06
0.39 0.31 0.25 0.18 0.13 0.10 0.06
0.43 0.34 0.27 0.19 0.14 0.11 0.07
0.48 0.38 0.31 0.21 0.16 0.12 0.08
0.57 0.45 0.36 0.25 0.19 0.14 0.09

Focal Ratio 
4 4.5 5 6 7 8 10

2 Offset (mm) 
2.8 2.2 1.8 1.2 0.9 0.7 0.4
3.5 2.7 2.2 1.5 1.1 0.9 0.6
4.4 3.5 2.8 2.0 1.5 1.1 0.7
5.6 4.4 3.6 2.5 1.8 1.4 0.9
6.7 5.3 4.3 3.0 2.2 1.7 1.1
8.1 6.4 5.2 3.6 2.6 2.0 1.3
9.0 7.1 5.8 4.0 2.9 2.3 1.4
10.0 7.9 6.4 4.4 3.3 2.5 1.6
10.8 8.6 6.9 4.8 3.5 2.7 1.7
12.2 9.7 7.8 5.4 4.0 3.1 2.0
14.4 11.4 9.2 6.4 4.7 3.6 2.3

Step 3: Establish the tilt of the elements. 
Once you have the diagonal visually centered in the focuser tube and offset 

the proper distance, you are ready for the tilt adjustment. If you were to 
carefully set the tilt of the primary mirror first, the setting would go amiss when 
the diagonal is finally adjusted. Thus, the tilt of the diagonal must be fixed 
before the main mirror is touched. 

At this point, visualize the main mirror as painted white. All you can see at 
the primary are mirror clips jutting onto its surface. Ignore any reflections. A 
useful trick is to become painfully aware of dust on the mirror. Concentrate on 
the dust and the mirror clips. Look at the mirror, not through it. Figure 6-7a 
shows the diagonal with incorrect tilt. 

Rotate the diagonal holder in the spider until it looks like Fig. 6-7b. Then 
adjust the screw in the holder base that tilts the diagonal either toward or away 
from your eye to center the main mirror clips as in Fig. 6-7c. Most diagonal 
holder bases don't contain springs. If you loosen one screw, you must tighten 
the other two. 



6.5.   Aligning Three Telescopes 115 

 

Fig. 6-7. Setting the angle of the diagonal: a) A misaligned diagonal, b) After spinning the diagonal in 
the spider, c) After tilting the diagonal using screws at the base. 

Oddly, the two most common adjustments are rotating the whole diagonal 
about its axis and adjusting only one screw at the base. You may well ask why 
diagonal bases have three pesky and hard-to-reach screws. A spring-loaded hinge 
and one adjustment screw make more sense. One explanation is that telescope 
makers are extremely conservative, and diagonals have been mounted with three 
screws for a long time. 

The above description had all of the wrong turns and frustrations removed. At 
first, it seems impossible to make these adjustments to simultaneously achieve 
diagonal alignment and keep the connectors tight. As the wrench is turned on the 
spindle, diagonal rotation is especially hard to prevent. Fifteen minutes of careful 
work can be lost while you try to torque the diagonal securely into place. What 
you eventually learn is how to predict the effect of the wrench. Ultimately, you 
will know how far to offset the finger-tight alignment to achieve wrench-tight 
alignment. 

The last job of coarse collimation is setting the tilt of the main mirror. Finally, 
you may consider the reflection in the primary. The little hole through which you 
are looking is reflected somewhere near the mirror dot. By adjusting the screws 
on the back of the main mirror, move the hole reflection until it is behind the dot. 
Do not spend a great deal of effort on refinements of this adjustment. You will set 
it empirically with the star test. 

Figure 6-8a is an example of a misaligned main mirror. Figure 6-8b shows 
correct coarse alignment. The stubby arrow shows the direction to the reflection 
of the focuser's base. 
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Fig. 6-8. With the diagonal aligned, the screws on the back of the main mirror are adjusted until the 
dot is superimposed on the sighting hole: a) the starting appearance, b) correct coarse alignment after 
moving the reflection of the hole in the indicated manner. 

Step 4: Repeat steps 1, 2, and 3 as an iterative procedure. 
You are certainly allowed to start this process over again to correct any 

difficulties. Remember to order the steps properly. Don't adjust randomly, even 
though you are sorely tempted. A good example of one such temptation is the 
decentered appearance of the second reflection in the diagonals of Figs. 6-5 and 
6-8b. Remember, these systems are correctly aligned, but the reflection of the 
bottom of the focuser is still decentered, an especially large effect in fast 
mirrors with big diagonals. 

When they first notice this decentering, many first-time telescope colli-
mators start tugging at the diagonal, and end up destroying their hard-won 
coarse alignment. People are unusually disturbed by this decentering, and they 
often skew the alignment until these circles are approximately concentric as 
well. 

Unfortunately, this mistake has the same effect as tilting the focuser over, 
and by implication, tilting the focal plane. The eyepiece is no longer transported 
along the optical axis. Barlow lens performance may suffer, and the edge of 
photographic film frames become indistinct and blurry. Because of the natural 
curvature of field in Newtonian reflectors, one side of the frame is severely out-
of-focus while the other is not. (Indeed, such photographic behavior can be used 
to diagnose a tilted focal plane.) 

Supposedly, Fig. 6-5 is perfectly aligned. Why then, should a telescope in 
perfect collimation ever show any form of decentering? The problem is the 
three reflections that occur when you look though the telescope in this manner. 
The usual path of light is one reflection off the primary and one reflection off 
the diagonal. When we stare backwards through the telescope, the path is one 
reflection off the diagonal, a second reflection off the main mirror (okay so far), 
and α third reflection off the diagonal.   We should 
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expect centering only as far as the main mirror in Fig. 6-8b. Neither the 
diagonal as reflected in the main mirror nor the bottom of the focuser tube as 
reflected twice in the diagonal needs to be centered. 

One modification should be made when you are satisfied with the coarse 
alignment of the instrument. Untwist the vanes of the spider so that they are 
once again perpendicular to the main mirror. This step is best done gently with 
a narrow-jawed crescent wrench. Cradle the vane near its middle or somewhat 
nearer the tube. Look through the sighting hole and twist the spider until it 
appears narrowest. This ensures that the spider obstruction causes as little 
blockage as possible. 

Step 5: Adjust only one element in fine alignment. 
Fine-align on a star. Use your accustomed configuration for high mag-

nification. If you normally use a Barlow lens, include it in the optical train. 
You should be more concerned with hitting the axis of that Barlow than with 
attaining a pretty alignment of the dots. Pick out a moderately bright star of 
high elevation, and center it in the field. Rack the focuser out or in until 
defocusing aberration is about 10 wavelengths. If the telescope is severely 
misaligned, you see something like Fig. 6-9d. This pattern is unlikely if coarse 
alignment was done carefully. A misalignment of 12 arcminutes in our 
example means that the reflection of the sighting hole is decentered by 4 mm, 
or just outside the dot. (Consider how bad the alignment must have been before 
you started.) 

The model used to generate these patterns is somewhat inadequate. The 
obstruction is still centered in the calculations, but it isn't centered in a real 
misaligned reflector. The sideways shifting of the secondary shadow is slightly 
enhanced outside focus and diminished inside focus. 

More likely, you see less distorted patterns as in Fig. 6-9c or Fig. 6-9b, 
which are examples of milder misalignment. For these cases, the pattern Fig. 
6-9b is difficult to distinguish from a perfect pattern when it is defocused as 
far as 10 wavelengths. Choose a dimmer star and defocus a smaller amount. 
Something like the images in Fig. 6-10 should appear. If seeing is excellent, 
you can perform the last critical adjustment on a focused star. Unfortunately, 
the seeing is seldom good enough to do so. Take comfort in knowing that if 
turbulence is bad enough to make star-test alignment difficult, seeing is 
probably the limiting factor in your wobbly stack of filters. 

The optical axis in all of the figures is far to the right of the pattern. You 
need to move that axis back to the center of the field, so you want to move the 
image to the left. The real situation will not be so cooperative. The coma flare 
can be pointed at any angle. You must be able, somehow, 
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Fig. 6-9. Star test patterns showing increasingly bad misalignment of a 10-inch, (250-mm) f/4.5 
Newtonian reflector: a) the expected pattern if the telescope is perfectly aligned, b) misaligned by 3 
minutes of arc (the worst misalignment that delivers a passable image), c) misaligned by 6 
arcminutes, and d) misaligned by 12 arcminutes. The focused patterns are magnified 6 times 
compared to the unfocused patterns. See Appendix D for labeling information. 
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Fig. 6-10. The 3 arcminute misalignment of Fig. 6-9 as defocusing is adjusted from 1 wavelength to 4 
wavelengths. The misalignment is clearly shown. 

to correlate the pattern you are seeing with a cell adjustment screw. 
A Newtonian has two mirror reflections, including one at a right angle. 

Perhaps some people can visualize the three-dimensional situation well enough 
to determine which screw to turn purely by logic, but they are few. The best 
technique to find this screw is to decide which clock angle you want to move the 
image—say, to 7 o'clock. Then rack the eyepiece a long 
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distance out of focus. Placing your hand in the optical path of the telescope and 
noting where the shadow intrudes on the defocused disk, you can decide what 
part of the mirror corresponds to a certain clock angle. You can bring the hand 
shadow either to 7 o'clock or 1 o'clock. Then follow this orientation back along 
the tube to the mirror cell. 

When you trace this line back to the mirror, you will emerge either close to a 
screw or across the tube from one. Give that screw a small adjustment in either 
direction. It is not important which way you turn it, just that you remember the 
modification. Recenter the star and see if the situation is worse or better. 

If it's worse, undo the damage and turn it the other way. Look at the image 
again. It should now improve. Pick a new adjustment direction, and repeat the 
whole process. Always recenter the star before deciding on the next step. If the 
cell adjustment bottoms out and you cannot tighten a screw, remember that 
loosening the other two is equivalent. 

 

Fig. 6-11. The adjustment triangle of a three-sided cell, and the first few steps in fine alignment on a 
star-test image. 

As you home in on a fine-aligned mirror, you should be following a path 
like that in the example of Fig. 6-11. You can only tilt the mirror along the 
edges of the adjustment triangle. Please remember, what you are really 
changing is the position of the optical axis, not the image, so you want to move 
the image in a reverse direction to all of these adjustments. 

I personally find image movement very confusing, so I don't even watch the 
image shift in the field of view.  I just decide the clock angle and use 
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the trial-and-error method described above. Again, it is more important to move 
slowly and methodically than to understand every twist and turn. The path of 
Fig. 6-11 is not the only solution to this initial condition or even the most 
efficient, but it succeeds. 

6.5.2    The Refractor 
Most smaller, less-expensive refractors cannot be collimated because the 

makers prefer locking down the factory adjustment. Reasoning that 
incompetent users cannot botch the alignment, they don't fit the telescopes with 
adjustments. Fortunately, small refractors use a long-focus design that can 
tolerate large misalignments, so the absence of adjustments doesn't often affect 
the image. 

In recent years, partly because of the resurgence of interest in big refractors 
and the advent of new apochromatic and advanced glass designs used at low 
focal ratio, refractors are being supplied with adjustable cells once again. If 
your refractor isn't adjustable, you can still check it using the method described 
here. Unfortunately, telescopes lacking adjustments might have to be returned 
to the maker for collimation. So-called "telephoto" designs may also need to be 
returned. These instruments are permanently fitted with a hard-to-reach 
telenegative amplifier as the last lens group, far down the tube. 

Refractors are not difficult to align. Geometric alignment is usually 
sufficient because their advanced optical designs yield wide, well-corrected 
fields. The problem is one of technique and equipment. A refractor is aligned 
sitting on a table with the lens cap on. 

The usual device used to inject light into the darkened tube is called a 
Cheshire eyepiece (Sidgwick 1955, p. 185), a modified version of the sighting 
hole used to align the Newtonian. In that case, ordinary room light on the 
translucent film-can cap was sufficient to provide enough backlight to see the 
dot. For refractors, a great deal more light is needed. Ordinary glass only 
reflects about 5% of the energy that strikes it, transmitting the rest. Coated 
lenses reflect even less. The Cheshire eyepiece is designed to provide a target 
bright enough to see, even after inefficient reflections. You can obtain one 
commercially or make it yourself. 

Figure 6-12 shows one such alignment tool. It has a long tube with a 
porthole drilled in the side to allow light to enter. A dowel cut at 45° is 
inserted in the end of the eyepiece and drilled so that you can see through it. 
The oblique side of the dowel is at least painted glossy white, and if its surface 
is polished metal, so much the better. The inside of the sighting hole is 
carefully blackened. The purpose of the defining stop is to put a crisp edge on 
the target.   Such a refinement is not really necessary if the 
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Fig. 6-12. The Cheshire "eyepiece." The Cheshire is just an illuminated sighting hole; it contains no 
curved or high-quality optical surfaces. The reflective target pattern is shown at right. 

porthole is carefully placed.2 
Taylor advocates the use of a white card tilted at 45° into which a sighting 

hole is placed, a "Cheshire" without the "eyepiece" (Taylor 1983). This 
suggestion, however, presumes that a great deal of care is taken with mounting 
the card and centering the sighting hole. Blacken a small elliptical area around 
the hole so you will see a circle at 45°. 

Most adjustable lens cells use some variant of the push-pull system depicted 
in Fig. 6-13. This lens cell, when precisely adjusted and locked down, is 
extremely stable. A telescope flange is fixed on the tube, and the lens cell floats 
on three adjustable "push" screws threaded into that flange. Because the push 
screws are not sufficient to prevent the cell from dropping off, a matching pull 
screw associated with each push screw is added, making 6 screws in three 
groups around the tube. Since no springs are used, as one screw of each pair is 
loosened, its partner must always be tightened. Figure 6-13 shows a wide 
separation of the lens cell and the telescope flange to demonstrate the function 
of a push-pull pair. In fact, the starting configuration should always have the 
lens cell fitted nearly against the telescope flange. The adjustment will be 
longer-lived if the gap is small. Also, most real mirror cells carefully tuck the 
adjustment screws out of the way so they will not disturb the clean lines of the 
telescope. Some designers are so clever at hiding these screws that the 
instrument may not at first even appear adjustable. 

If you can make this adjustment with a helper, you are strongly advised to 
do so. A couple minutes of alignment with two people quickly expands to an 
hour when you do it yourself. Put the Cheshire in the focuser 

_________________________________________ 
2 If you use a Cheshire to align Newtonians, make sure you have sufficient in-focus travel to 

allow the eye to be placed close to the focal plane, and with fast mirrors make certain that the long 
sighting hole does not obscure the outside of the optics. 
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Fig. 6-13. A "push-pull" adjustment screw pair. Inset shows three pairs making an adjustable cell. 
and shine light from the side, carefully shielding your eyes from the light source. If 
possible, use a low-magnification, close-focusing telescope looking directly through the 
rear hole. This ploy removes your eye from the bright sidelighting and expands the 
reflections so you can easily see them. 

 
Fig. 6-14. The Cheshire reticle reflection patterns from a 152-mm f/12 air-spaced apochromatic 
refractor: a) before collimation, b) after collimation. Neither alignment gave noticeably different 
images at the eyepiece. 

In one apochromatic refractor, the pattern of Fig. 6-14a was visible through a close-
focusing finder telescope behind the sighthole of the Cheshire. The big annulus was a 
bright steely gray and was just about the size of the Cheshire. It must have been 
reflected from an air-to-glass surface of low curvature.   The next annulus inward was 
pastel blue and 
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somewhat dimmer. It was smaller, so it must have originated at a more sharply 
curved surface. The smallest ring was a very dull red or magenta and was not 
even observable with unmagnified vision. It perhaps relied on two or more of the 
inefficient reflections at coated interfaces. 

This apochromat had six air-to-glass surfaces, and only three reticle 
reflections were seen. Fewer reflections are anticipated in a doublet. In fact, the 
Cheshire tool may not be very useful with some cemented doublets or refractors 
which use optical couplants (oils or gels) between the lenses. Only one 
reflection might be bright enough to see, and you wouldn't be able to compare it 
to others. 

By adjusting the push-pull pairs, you can quickly make the reflection look 
like Fig. 6-14b. Turn the telescope over and check the pattern again. You will 
probably discover that the lens rattle designed into the cell compromises the 
centering. This condition is nothing to worry about; simply adjust it until it is 
about equally misaligned at each orientation. Even with the situation in Fig. 6-
14a, misalignment was not noticed in the image. 

After you achieve this grade of alignment, you are usually done. You can 
check the out-of-focus image but you probably won't be able to detect any 
astigmatism caused by misalignment (although other causes are still 
possibilities). The well-corrected field of a typical refractor is enormous. 

If you do notice some astigmatism, you can certainly try to adjust it out 
using the star test. The direction of adjustment is less clear than it was with more 
coma present, since the direction of the optical axis can either be along the short 
dimension of the out-of-focus stellar disk or along the long dimension. For 
example, the optical axis may be found at 4 o'clock, 10 o'clock, 1 o'clock, or 7 
o'clock, depending on whether you're inside or outside focus. With coma 
present, the angle was unique. 

If the eyepiece is set inside focus, the optical axis can be found on either 
side of the short axis of the astigmatic oval. If the eyepiece is outside focus, the 
optical axis can be found along the long axis. For obvious reasons, you should 
decide on a certain side of focus and stick with it. 

When the cell is adjusted at 90° to the proper direction, the stretch direction 
of astigmatism rotates rapidly. Also, undoing the adjustment and going an equal 
distance on the other side doesn't improve anything; it just reverses the rotation. 

In star-test alignment, only a tweak of the push-pull screws will be enough. 
After all, the telescope should be very nearly collimated. Tiny changes at the 
screws mean enormous changes at the focal plane. If you are unable to remove 
the astigmatism by collimating it out, your telescope may be suffering from 
pinched optics or a true cylindrical deformation ground into the glass. 

Let's review the general steps involved in alignment and see how they 
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applied to refractors: 
1. Establish the axis line. It was defined as the center of the tube. 
2. Center the optical components on this axis line. Since most refractors 

have only one closely-spaced group of lens elements held in an 
accurately machined cell, this step was automatic. The focuser is assumed 
to transport the eyepiece along the axis. (In small, inexpensive 
refractors, this condition is not always met.) 

3. Establish the tilts of the elements. This step was accomplished by 
centering the reflection of the annular reticle pattern of the Cheshire 
eyepiece. 

4. Repeat steps 1, 2, and 3 as an iterative procedure. Check the align 
ment with the refractor turned over, and adjust until the Cheshire 
reflection looks about equally misaligned at all orientations. 

5. Adjust only one element in fine alignment. This step was probably 
not needed, but if it were, it would have taken place on the objective. 

6.5.3    The Schmidt-Cassegrain 
Schmidt-Cassegrains of effective focal ratio f/10 have a primary mirror of 

about f/2 multiplied by a five-power convex secondary mirror. The center of 
curvature of the primary mirror must be behind the center of the secondary. 
Since the main mirror is not adjustable by the user on most Schmidt-
Cassegrains, that adjustment must be set properly at the factory, or the 
telescope cannot be collimated. 

An unacceptable main mirror adjustment is difficult to diagnose, but some 
clues exist. First, go through the rest of this collimation procedure to the best 
of your ability. Then, using a sighting hole (described above under Newtonian 
alignment), look back through the optical system. If you don't see absolutely 
concentric circles, rings within rings, your best alignment may be a kind of 
compromise. You will be offsetting the secondary to partially compensate for 
the aberrations induced by a misaligned primary. Still, the main mirror 
misalignment must be fairly serious before you are really able to detect non-
circularity in these tiny reflections. 

The front side of the instrument is an easier location to detect misalignment 
of the primary mirror. For 200-mm Schmidt-Cassegrains, place your eye a 
couple of feet from the front (about ½ meter) and center the biggest reflection 
of the secondary outside the back of the secondary. By carefully adjusting the 
placement of the eye, you are able to see the reflection of the secondary as a 
thin annulus outside the true secondary. You are now nearer the alignment 
axis of the main mirror. If the mirror is seriously misaligned, 
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it should be obvious that this axis does not coincide with the axis of the tube 
because the inside of the telescope will look tilted. 

Another clue is derived from the way these primaries are mounted. The 
focusing action actually transports the mirror forward. The mirror's center is 
glued to a plate on the front of this axial focuser. Often, these mirrors get out of 
adjustment because of some sort of mechanical fault in the focuser. (Perhaps it 
has taken an enormous jolt during shipping.) As you focus the instrument, the 
image is not seen to defocus in a fixed location but reels or loops across the 
field. In any case, such anomalous focusing behavior, if severe enough, 
demands factory service. 

For now, let's assume you have a well-aligned primary mirror. The only free 
adjustment is the tilt of the secondary mirror. If you have a severely misaligned 
Schmidt-Cassegrain, you may need to coarsely align by looking through it with 
a sighting hole. Center the reflection of the primary mirror in the secondary. 
Usually, this step will be unnecessary. 

The final step is fine alignment with the star test. You can align the 
telescope in the daytime on an artificial star or at night on a real star. The 
Schmidt-Cassegrain is the most convenient of the example telescopes to align 
because of its compactness. If your arms are long, you can actually reach the 
adjustment screws while your head is behind the eyepiece. Of course, 
collimation is still easiest with two people, one calling out instructions and the 
other trying to obey them. 

The secondary cell of a Schmidt-Cassegrain mount is a variation of the 
diagonal mount of the Newtonian. In both cases, loosening one screw is 
counterbalanced by tightening the other two. In changing the tilt of the 
secondary mirror, you must achieve alignment while keeping the mirror cell 
screwed tight. 

It may seem expedient to overly tighten one screw as collimation is 
approached. Avoid such a shortcut. The secondary mirror is mounted in glass, 
and you might break the corrector. Also, the secondary mirror is held on a stiff 
plate, but this plate can be bent and the mirror strained. Finally, you might jerk 
the wrench out of the socket when forcing it and end up scratching the 
corrector. Tighten it snugly, but don't force it. If you have to move it a bit more, 
loosen the other two screws instead. 

A misaligned Schmidt-Cassegrain will generate the same sort of star test 
behavior as depicted earlier for a Newtonian. Perform the star test without a 45° 
elbow. You will have one less potential source of aberration. and you will be 
able to observe the angle of the optical axis. The correct screw to turn is 
straightforwardly determined. Soon, you can center the shadow of the 
secondary in the image. (Use the same method as was used in the Newtonian.) 
Refine the alignment by turning to a dimmer star and defocusing it less or, if 
seeing is excellent, leave the telescope in focus and 
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adjust the image for symmetry. 
To review, the steps involved in aligning a Schmidt-Cassegrain were as 

follows: 
1. Establish the axis line. That line, by definition, is coaxial with the 

tube. 
2. Center the optical components on the axis line. Centerings are 

factory-set and hence are not adjustable. 
3. Establish the tilts of the elements. The tilt of the corrector is, to first 

order, unimportant. The tilt of the primary is a factory setting and 
depends strongly on the condition of the focusing mechanism. Only 
the tilt of the secondary may be adjusted. 

4. Repeat steps 1, 2, and 3 as an iterative procedure. Because so many 
of the coarse alignment adjustments are out of the owner's hands, 
iteration is impossible. 

5. Adjust only one element in fine alignment. This step is combined 
with step 3. It is done on a star or artificial pinhole source placed at 
around 50 meters or farther; only the secondary is adjusted. 

If your telescope still displays asymmetric images at the end of these steps, 
then it will have to be returned to the manufacturer. The primary minor is 
probably tilted. The lack of adjustments on the main mirror is perhaps the 
weakest feature of commercial Schmidt-Cassegrain designs. 



Chapter 7 

Air Turbulence and Tube Currents 

Some sources of aberration have nothing to do with the telescope itself. 
They come from the necessary immersion of the instrument in a changing 
optical medium. The light of astronomical objects must traverse a turbulent 
column of air that extends many kilometers from the top of the atmosphere to 
the focal plane of the instrument. 

Little can be done by the amateur observer about turbulence high in the 
atmosphere, but it is easy to recognize in the star test. Many of the problems 
described in this chapter cure themselves after a time, particularly those having 
to do with the cooling of the telescope or of its immediate environment. The 
aim here is to teach you how to detect aberrations that originate in the motion 
of air, prevent them as much as possible, and recognize when they subside. 
Learning the star-test behavior of the atmosphere at your location will also 
allow you to identify those rare bouts of unusually steady seeing favorable to 
high magnifications. 

7.1    Air As a Refractive Medium 

The index of refraction of air is very near that of a vacuum, but it is 
noticeably different. At 0° Celsius, dry air at sea-level pressure has an index of 
refraction of 1.00029, while vacuum has an index defined exactly as unity 
(CRC 1973). Such a small difference doesn't seem worth worrying about, but 
the wave going through the air inside a 1.5-meter focal length telescope is 
slowed, relative to passage through vacuum, by about 791 wavelengths. 

Assuming that air is approximately an ideal gas and that the fractional part 
of the index of refraction changes linearly with temperature, one can easily 
figure out the lag for a small temperature difference. Recall that 0° Celsius is 
273° Kelvin in units of absolute temperature. Therefore, a 1° Κ difference in 
temperature over a distance of 1.5 meters results in a delay 

129 
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of 791/273 wavelengths per degree Kelvin, or about 2.9 wavelengths/0Κ (1.6 
wavelengths/0 F). Now stretch the tube of air up through the atmosphere, many 
kilometers overhead, with each layer at a different temperature. Propagation 
delays can be profound. 

However, it doesn't matter if the pencil of light is delayed uniformly. After 
all, the light has been on a long journey. Who cares if it arrives a little late? We 
are only interested in the variations in direction or time of arrival as the light 
enters different portions of the long, skinny cylinder of air in front of our 
instruments. We detect those differences when we see the image degraded by 
bad seeing. When we look through Earth's atmosphere, we hope for a pressure 
and temperature uniformity that does not often exist. Some parts of the 
wavefront are a small distance behind other portions of the wavefront. Such 
aberrations can form differences in intensity and apparent location (i.e., 
"twinkling"), but their most common effect on large apertures is to blur the 
image. 

In defense of the sky, perhaps we are expecting too much when we peer 
upward through all of that material and demand perfect images. After all, the 
total pressure of the atmosphere is the same as the pressure of over 30 feet of 
water. Sub-arcsecond resolution would not be expected from the bottom of a 
diving pool. Yet such resolutions actually are witnessed for images seen through 
the atmosphere. On exceptional nights, the atmosphere surprises us by becoming 
beautifully tranquil. 

Still, a mechanism producing small-scale differences in refractive index 
must exist before atmospheric effects become troublesome. Air, by its gaseous 
nature, doesn't tend to maintain differences in pressure or temperature—except 
for wide layering caused by the force of gravity. Air mixes together, averaging 
differences until layered uniformity prevails. Statistical inhomogeneity won't 
persist without mixing. The two mechanisms of most interest to telescope testers 
are atmospheric turbulence and tube currents. 

7.2     Turbulence 

If the atmosphere changed slowly, turbulence would never start. However, 
the atmosphere often is forced to move quickly. As sunlight deposits energy on 
the ground, it heats the air immediately above it. That air expands, becoming 
lighter than the mass of air immediately above it. The situation becomes 
unstable or "active," and the denser air falls to replace the warmer air below it. It 
moves quickly enough to generate turbulence. 

This type of fluid motion is called a "Rayleigh-Taylor" instability. Com-
pletely fill an empty soda bottle with water and invert it with a playing card over 
the opening.   Carefully remove your hand.  The water does not 
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fall out of the container (Walker 1977). If you were to suddenly remove the 
card, you would have a bottle full of water poised over a space of air. 

All the water can't fall immediately. Air pressure holds the water up in the 
same way that a column of mercury is held up in a barometer. All of the water 
molecules are holding on to each other so they won't fall away individually. 

Faster than humans can perceive, the random jiggles of the surface will 
cause one portion to deform slightly upward and another part slightly 
downward. That's all it takes. Once this process starts, it drives itself. A bubble 
rises and finally breaks off. The bottle empties, but it doesn't do so uniformly. 
The instability must form again and again. The bottle drains noisily, gently 
kicking in your hand. 

Incidentally, the instability doesn't take place if a sufficient external force 
holds the surface level. With the card, the surface was constrained by the 
structural strength of the paper. By the time the opening is reduced to the size 
of a soda straw, surface tension alone provides enough force to overcome the 
instability. You can lift narrow columns of water by merely plugging the top of 
a straw. 

For the atmosphere, no bottle circumscribes the unstable region, but 
essentially the same process occurs. As the cold air falls, inefficiencies ensure 
that the edges of the falling region aren't smooth. The fall is quick enough that 
tiny vortices form, but smaller swirls don't move with the speed of the main 
convective cell. Even tinier vortices form at the edges of these eddies. Finally 
the swirls become lost in complexity. At some small scale, the model of 
collective motion breaks down and the energy is expressed in heat. All realistic 
cases of fluid flow, such as streams and large convective cells, move 
macroscopically only on the average. When considered microscopically, they 
are turbulent. 

7.2.1    The Aberration Function 
Statistical variations of the wavefront are usually handled with semi-

analytic procedures. These procedures, which commonly assume a Gaussian 
form for the random variations, are quite useful for calculating the long-
exposure MTFs and other features associated with rough surfaces (Schroeder 
1987, p. 315). However, they do not allow us to calculate the appearance of a 
single example image. They are the behavior averaged over many such 
roughened apertures. 

The method used here to simulate the wavefront is called the midpoint 
displacement fractal algorithm. It is used to generate wonderfully realistic 
fractal landscapes (Peitgen and Saupe 1988, p. 96; Mandelbrot 1983; Har-
rington 1987).   It can also render an artificial, pseudo-random wavefront 
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just after it has passed through the aperture. Fractals were first applied to 
diffraction problems by M.V. Berry in the seminal article "Diffractals," in which 
a fractally-derived phase screen first appeared (Berry 1979, 1981). The method 
used here is an adaptation of an earlier article, where a one-dimensional 
variation of the midpoint deviation algorithm was used to calculate slit-type 
diffraction patterns (Suiter 1986a). 

Because of the way the fractal must fill in the area of a two-dimensional 
grid, we may conveniently proceed by a two-step iterative procedure. The 
algorithm starts with the four corners of 129 × 129 point grid assigned arbitrarily 
to be of height zero (Fig. 7-la). Only the location of the points are shown in Fig. 
7-1; the deviation is perpendicular to the paper. 

For the first half of the first iteration (Fig. 7-1b), the offset of the next finer 
division is calculated as the average of the previous four set points at the ends of 
the dotted curves (for the first iteration, this average is zero) plus or minus some 
random deviation (±Δz). The center point is assigned this value. The points set 
only during each half-iteration are black; all previously assigned points are 
white. Points of the 129 × 129 grid that have yet to be assigned values aren't 
shown. 

During the second half of the first iteration, the edges are filled in. The four 
nearest points are averaged again, assuming that the points off the edge of the 
area are zero, and to this number is added another plus or minus deviation. This 
time the maximum allowable deviation is divided by 2 before it is assigned. 
Notice that each complete iteration cycle averages the positions of the points 
first oriented at the diagonals to the point to be set, and then in the second half, 
averages at rectilinear angles. For obvious reasons, this algorithm can also be 
called the "×+" method. 

At the start of the second iteration, the maximum allowable offset is divided 
once again by 2  to make it ±Δz/2. At the beginning of the third iteration, it is 
±Δz/4, and so forth. Thus, the cell sizes are decreasing at precisely the same rate 
as the maximum deviation, setting up conditions so that the apparent random 
slopes average out to be the same at all scales. This is called statistical self-
similarity, or an independence of scale for averaged behavior. 

Finally, when the seventh iteration is completed (it would be the 15th frame 
of Fig. 7-1, if the figure were allowed to go that far), the entire 129 × 129 grid is 
assigned. At this point, with the fractal algorithm finished, the area is 
conditioned to resemble a circular aperture. The aberrations and transmissions of 
points farther than 64 locations away from the center point are set to zero, and if 
a secondary is simulated, the same is done for all points within a certain radius. 
The outer parts of the 129 × 129 grid is cut off like the extra dough of a pie 
crust. The statistics of the clear aperture are then calculated, and the RMS 
deviation is scaled to the value 
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Fig. 7-1. The ordering of point assignments of the midpoint deviation algorithm. Here the roughness 
is out of the paper. 

demanded by the individual computation. 
An easy misunderstanding of Fig. 7-1 could occur here. Because of its 

superficial resemblance to the later image frames, readers could incorrectly 
assume that this non-physical mathematical procedure is used to calculate an 
image. This method merely simulates the random aberration function on the 
pupil, not an image. The image is calculated with the same Huygens-Fresnel 
theory used in other chapters (see Appendix B). 

Physical reasons may determine that random variations do not persist 
equally over all scales. In fact, such is the case for turbulence. The 
characteristic width scale of turbulence, or about the distance between the 
"bumps," is on the order of 2-20 cm, with a good one-number estimate of 10 cm 
(Roddier 1981, p. 302; Schroeder 1987, p. 314). Abrupt deformations of the 
wavefront for slight lateral motions are not anticipated. The roughening of the 
wavefront is slightly rounded. This feature results in the well-known "small 
telescope" effect, where tiny instruments seem to give better images than large 
ones. Apertures smaller that 100 mm are looking through portions of the 
wavefront that are closer to a plane.   Turbulence 
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causes the image to jump around, but it appears to be well delineated from 
moment to moment. 

For this reason, the algorithm is slightly modified. A quenching factor is 
applied to the 2  diminishing of each half iteration. The divisor in this case 
becomes 2 q, where q is the quenching factor. For q greater than 1, the surface 
softens to make the gross variations more noticeable, with fine-scale roughness 
relatively suppressed. The surface resembles crumpled smooth paper instead of 
sandpaper. The quenching factor used here was between 1.1 and 1.6. No attempt 
was made to physically justify this model, but the lessening of finer scale eddies 
demands some sort of smoothing. The images generated with such quenching 
factors look the most authentic, and that realism justified their use in the images 
that appear here.1 For quenching factors different from 1, the surface is no 
longer self-similar. 

The other modification is a way of controlling the largest scale of the 
roughness. We would expect turbulence to show itself differently in a 24-inch 
behemoth than in a tiny refractor. In large telescopes, the image does less 
jumping around and momentary clearing of the blur happens less often. For the 
purposes of this chapter, the largest scale of the roughness was set at a 
significant fraction of the aperture. Thus, the calculations below are good for 
small telescopes with aperture of about 200 mm for most cases of turbulent air. 

Some important characteristics of this fractal aberration will affect the 
quality of our simulation. First, the surface distribution is not Gaussian (bell-
curve shaped). The surface distribution (shown in Fig. 7-2) is roughly Gaussian 
in that it is more-or-less peaked, but under no circumstance is it Gaussian nor 
would it ever be Gaussian, even if the iteration were allowed to continue 
forever. More commonly, multiple peaks are found in the surface distribution. 
Such unusual action allows us to simulate detail that would be washed out of 
Gaussian models. 

Second, the surface is locally correlated. A surface with memory will allow 
our images to contain realistic streaks and bumps. The MTFs appearing below 
are calculated with the modeled "snapshot" surfaces and will show statistical 
variations. This procedure gives us an important view that could not be attained 
if we figured the MTFs from long-exposure averages. 

One feature compromises the algorithm described above. The fictional 
exterior points are assumed to be zero, so one might expect some unusual 
distortions to occur near the edges. Because the surface was pie-trimmed, the 
worst effects are toward the four compass directions of the pattern nearest those 
edges. Distortions were indeed seen, but the problem areas were small and the 
effects did not readily appear in diffraction patterns. 

________________________________ 
1 Readers interested in the more physical time-averaged models can find a survey and a good 

bibliography in the review article by Hufnagel (1993). 
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Surface height distributions 
used in turbulence calculations

1 RMS height 
Fig. 7-2. Example wavefront-height distributions of the turbulent wavefronts, with the x-axis 
measured in units of the roughness RMS value. 

 

Fig. 7-3. An example modeled aberration function of air turbulence. 

An example turbulent wavefront is shown in Fig. 7-3, with the wave-front 
conveniently elevated a small distance through the aperture. The most pleasing aspects of 
this pattern are the pseudo-random creases running through it. Creases should model the 
shadow-band behavior of real turbulent air currents that cause speckles and temporary 
spikes in the image. The quenching factor has acted to smooth the fine-scale variation, 
which will become more apparent when compared to the aberration function for primary 
ripple in the roughness chapter. Because earlier iterations were capable of much more 
movement, occasional dimples appear in the aberration function. 
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Filtration caused by turbulence 

 
Fraction of maximum spatial frequency 

Fig. 7-4. Twelve MTF curves associated with 0.15 wavelength RMS air turbulence. Aberration 
functions are calculated with the fractal model described in the text. 

7.2.2     Filtering Caused by Turbulence 
These apertures are not circularly symmetric. Their ability to preserve 

contrast depends on the orientation of the bar pattern of an MTF target. 
Therefore, the MTF for each of the four generated surfaces was calculated along 
3 axes. All 12 such MTF curves are shown in Fig. 7-4. The amount of RMS 
aberration used was about twice the 1/14-wavelength Maréchal tolerance. If one 
looks at Fig. 7-2 and replaces the RMS height with 0.15 wavelength, it is 
apparent that the total wavefront aberration is about 4 times that value, or 0.6 
wavelength. This aberration is about twice as bad as can be tolerated for high-
resolution observing, but such aberration is by no means uncommon for air 
turbulence. Often, seeing is much worse. 

Also notice the extreme fluctuation at the high-frequency end of the chart. 
Because the curve flutters around rapidly there, resolution is limited to about 1/2 
to 2/3 of the theoretical maximum for the aperture. With a 200-mm aperture, the 
central blur circle has a radius of about 1 to 1.5 arcseconds. 

7.2.3     Observing Turbulence 
In the focused image plots of Fig. 7-5, the modeled turbulence corresponds to 

a 5 on Pickering's 1-10 seeing scale, since the focused disk is always visible but 
arcs aren't often seen.   This number corresponds to a 
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TURB = 0.15 waves RMS LATER normal OB=20% 10

Fig. 7-5. Image patterns calculated for 0.15 wavelength turbulence. Perfect patterns are to the right. 
Central obstruction is arbitrarily set at 20% of the aperture. (For a description of the labeling of 
image figures, see App. D.) 

"poor" seeing rating (Muirden 1974). Sometimes turbulence is much more severe. Good 
lunar-planetary viewing requires better. 

Fig. 7-6 tracks the focused image as turbulence aberration becomes less objectionable. 
Fig. 7-6a shows long arcs and probably fluctuates between Pickering ratings of 6 and low 
7. Fig. 7-6b has a rating of high 8, since the rings are complete but are always moving. 
Fig. 7-6c is about a high 9 or low 10, since the rings are stationary and the disk is crisply 
defined, but the weak ring still breaks up. With as much as 1/20 wavelength of turbulence 
wavefront deformation, seeing still has a 10 out of 10 rating. 
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0 0 0 

Fig. 7-6. Focused images as turbulence is lessened. The ring structure reappears. 

The turbulence aberration is easily distinguishable from other aberrations: 
1. It moves quickly. In less than a second you see an entirely different 

pattern. 
2. It is balanced on either side of focus (unbalanced aberrations can 

modify the patterns, but the behavior is not caused by air turbulence). 
3. If you pull the eyepiece outside of infinity focus, you can often focus 

on the disturbances themselves high in the atmosphere. They appear 
as bands or cells moving across the out-of-focus image. 

7.2.4     Corrective Action 
You can do little about high altitude turbulence, since it is beyond reach. High 

turbulence is more a function of the climate rather than a local phenomenon. 
However, you can start a log of weather and seeing conditions and see if you can 
come up with correlations. In general, the presence of clouds and high wind 
indicates that surplus energy is being transported around in the atmosphere and 
that seeing is bad. Good seeing is not always associated with transparent nights 
and may in fact be negatively correlated. Tranquil nights tend to be a little hazy. 

Local seeing, or turbulence that occurs within a few hundred feet of the 
ground, is another matter. Local air turbulence may be caused by thermal currents 
from buildings or structures that have yet to cool from daytime heating. House 
shingles are notorious for their long cool-down times. Paving asphalt also retains 
heat and gives it up slowly. For this reason, observing over grass or trees is much 
preferable to observing over houses or roads. 

Some authors have remarked on the interference caused by ground seeing 
(Muirden 1974), which is an effect located very near the telescope. 
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Personally, I have never had any trouble with turbulence very near the telescope 
that was not caused by setting the telescope directly on asphalt or concrete. One 
exception to this general situation, however, is that the nearby observer is a 
very good furnace. Body heat can waft across an open tube quite easily. This 
problem is not too great in the summer, when temperature differences are 
lower, but in the winter it can do serious harm to an image. A cloth drapery for 
an open tube framework often helps here. 

One thing to watch when several people are observing together is that those 
who are waiting to look don't congregate near the optical path of a telescope, or 
upwind of it. Heated air from their bodies or breath can intercept the incoming 
light beam. If possible, when hosting a public observing session, arrange the 
line on the down-breeze side of the optical path. Finally, if you have to 
transport the telescope to the site, be sure to park the automobile or truck so 
that air rising from the hot engine cannot interfere with anticipated high-
resolution observation. 

7.3    Tube Currents 

Air at different temperatures is affected by gravity because cooler air weighs 
more. When unconstrained by exterior structures, it forms the convection cells 
discussed above. Air inside a tilted tube tends to follow the wall—hot air on 
the high side, cool air on the low side. The tube resembles a tilted stovepipe. 
As air is heated at the bottom and becomes less dense, cool air falls down the 
tube and forces the hot air upward. It rises to hug the tube on its upper side and 
eventually exhausts to the outside. 

With a telescope at or near ambient temperature, temperature differentials 
aren't bad enough to cause tube currents. However, when a telescope is first 
taken outside, thermal inertia causes problems until the instrument reaches the 
environment's temperature. The thick glass of the objective is particularly 
prone to slow cooling. 

7.3.1    The Aberration Function 
Clearly, every telescope cools off differently. Some have other problems 

that may obscure or modify the tube currents, like a hot mounting or an 
observing pad that retains heat from the day. Some have peculiarly shaped 
tubes or partial tubes that would change the patterns modeled here. All cooling 
telescopes have an unavoidable amount of locally induced turbulence. Some 
telescopes have only stubby mirror boxes and no real tubes, and these generate 
different patterns than shown below. 

Schmidt-Cassegrains and refractors must cool off only through their rear 
exit portals or directly through the tube by radiative and conductive 
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cooling. One Schmidt-Cassegrain I examined displayed an extension of the 
secondary shadow on one side of focus and streaks parallel to the edge of the 
secondary on the other. At first, I thought it had a cracked corrector plate near 
the secondary mounting hole, but when the tube orientation changed, the pattern 
always followed an up-down direction. Presumably, a great deal of the cooling 
was taking place in or around the mirror or corrector plate perforations. An 
uneven thermal effect of the Cassegrain baffle tube may also have caused the 
problem. 

Even though it is not matched by every telescope, the behavior modeled 
below is common enough in small to medium-sized Newtonians with round 
tubes. The model assumes that the warm air is confined to the upper side of the 
tube and that its effect is to advance the wavefront only along that upper side, 
leaving the rest of the optical path comparatively untouched. This behavior was 
described in Chapter 2 as resembling the turning of a page. 

The model used here is 
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where x is the linear coordinate in one direction across the surface with the 
origin at the center of the aperture. The value of x reaches 1 at the edge of the 
aperture. 

The model does not allow variation in any other direction than the up-down 
coordinate. No roughness is superimposed on the effect of the tube current, even 
though it would surely be present. 

The aberration plotted over the pupil is shown in Fig. 7-7, with the up 
direction toward the right. 

7.3.2     Filtering of Tube Currents 
Again, the value of the modulation transfer function depends on the ori-

entation of the bar pattern. The function was calculated for three angles: up-
down, left-right, and a 45° tilt. Fig. 7-8 shows two cases. The 1/2 wavelength 
example is as bad as an observer should tolerate. The 1 wavelength case is 
severe, but not unusual for telescopes that have just been moved from warm 
surroundings. 

This transfer function plot possesses a number of interesting features. The 
first is the sudden drop of both the 45° and the horizontal MTFs. The sharp fall 
is caused by the localized nature of the aberration. The steep slope of the 
aberration kicks a lot of light out of the diffraction spot, affecting spatial 
frequencies even 1/10 of the maximum. For example, 
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Fig. 7-7. The tube-current aberration function modeled over the aperture pupil. 

Filtration caused by tube currents 

 
Fraction of maximum spatial frequency 

Fig. 7-8. The MTF for the modeled tube current aberration. Two different aberrations are shown. 
Each aberration has three curves, but the up-down bar orientation results in no degradation. The up-
down MTFs of both aberration values are plotted identically on top of the perfect pattern. 

if you had a 200-mm aperture, resolution of 5-arcsecond details would be noticeably 
degraded. 

Second, for one curve in each aberration amount, the contrast is unaffected. The 
smearing of the image in the vertical direction doesn't affect resolution of MTF targets 
with the bars oriented up-down. Of course, the unmodeled roughness would tend to break 
up this symmetry a little. 
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7.3.3     Observing Tube Currents 
Tube currents are easy to see. The problem lies in determining whether or 

not the aberration is in fact caused by a tube current or is present in the glass. 
These currents can be remarkably stable. You would think that they would 
dance and sway like high-altitude turbulence. The patterns do change, but they 
do so slowly, like candle flames. Even though you may know intellectually that 
a candle is a dynamic process, when you look at the fire, you easily slide into 
the comfortable viewpoint that it is motionless. A candle flame seems perched 
atop the wick. 

Truly hot telescopes boil with turbulence, but they don't show this effect 
very long. As the telescope cools, the tiny temperature differences do not 
support the formation of massively turbulent air masses. The air moves slowly 
and smoothly upward. It drifts side-to-side languidly, but at any given time it is 
relatively quiet. Tube currents are always influenced by gravity and hence are 
oriented in an up-down direction. 

You may easily determine the orientation of a suspected tube current 
wavefront deformation for refractors and Cassegrain-style instruments, just don't 
use a right-angled bend in the optical path. For a Newtonian reflector, however, 
determining the angle of the image is not straightforward. The cause is, of 
course, the built-in diagonal reflection. 

Two remedies are suggested. The first is to use a star on the north-south 
meridian. Direction can be determined from the western drift by turning off the 
clock drive (if one is used). This trick cannot be used for an artificial source test. 
For such a telescope, a simple expedient is to rack the eyepiece far out of focus 
and then insert a fist or other obstruction from a known angle in front of the 
aperture. Up or down can then be easily located. 

The diffraction pattern calculated for a total aberration of 1 wavelength 
appears in Fig. 7-9. The pattern is squeezed-in on one side of focus and 
stretched-out on the other. 

Once you see a tube current, make certain that some other difficulty isn't the 
problem. First, change the tube orientation. Locate a feature of the tube along 
which the stretching is pointed. If no tube landmark exists, make a slight mark 
on the tube or attach a little curl of tape. Then, rotate the tube by some 
reasonable angle. Unfortunately, fork-mounted Schmidt-Cassegrains are 
impossible to rotate. Use a test source at a different location. 

Tube currents will still point up and down with the new orientation, but they 
stretch toward a different tube feature. Other difficulties, such as warped or 
damaged optics, now show a non-vertical tilt in the eyepiece. 
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tube current OB=30%       10 normal OB=30% 10 

Fig. 7-9. The star test patterns of 1 wavelength of tube current aberration. The perfect aperture is in 
the column on the right.) 

7.3.4    Corrective Actions for Tube Currents 
Tube currents are not really that serious for very small telescopes. Just wait 

until the telescope cools down to the ambient temperature. If environmental 
temperature varies so much that the telescope never really catches up to the local 
temperature, atmospheric conditions are so unstable that seeing will be poor 
anyway. 

Sealed telescopes, particularly refractors, do not display the same tube 
current effects that are common in open-tube reflectors. Refractors are typically 
made with metal tubes that leak heat readily, so they quickly cool 
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down. Setting up small telescopes in the late evening, with enough time to reach 
the ambient temperature, is often sufficient to eliminate this optical problem. 

The only observers who may find tube currents to be both objectionable and 
persistent are those using large or especially thick telescope objectives. I once 
worked on a 16-inch Newtonian mirror of 3-inch thickness (1:5 ratio). This 
mirror required half the night to cool down even under relatively benign 
conditions. Many nights it never cooled, but when it did, the mirror performed 
magnificently. 

Such mirrors really should be prepared before they are required for 
observing. Transport in a warm automobile is one of the worst things that can be 
done to a thick mirror. Almost equally bad is storage in a sunlit shed or 
observatory. The optimum procedure is to open up the telescope or observatory 
in the early evening, long before the instrument is required. If the telescope is 
transported, try not to carry it in the heated passenger area of an automobile. 
Instead, haul it in a trailer or in the back of a truck. 

Sometimes, the telescope must be set up on concrete or asphalt. Even with a 
properly stabilized instrument, the tube can catch external currents and act as a 
duct for them. In such situations, try closing the bottom end of a Newtonian's 
tube with a plastic bag and see if the aberration decreases. 



Chapter 8 

Pinched and Deformed Optics 

At the start of each observing session, you should star test for problems that 
may change with transport of the telescope or a remounting of the optics after 
maintenance. This chapter will discuss the star-test pattern characteristic of one 
such warping and will present ways to relieve unusual stresses on the optics. 
Beyond the image improvements derived by giving careful attention to the 
deformations, you may be able to avoid catastrophic damage. Edge fractures 
are common among mirrors with too-tight edge clips. I have seen one mirror 
that was so severely strained that it broke in half. 

8.1    Causes 

Imagine a mirror or lens as a thick circular chunk of gelatin. Because we 
don't ordinarily notice tiny deformations, we think of some materials as rigid, 
but all objects warp with pressure and temperature changes. An object that 
looks solid to unmeasured eyesight and touch becomes soft and pliable when 
we look at changes as small as a wavelength of light. Optics are rigid only in a 
macroscopic sense. 

If we place the gelatin on three support points, the shape of the surface 
distortion becomes a complicated function of the thickness of the slab and the 
placement of those supports. The problem is even more complicated if we tilt 
the gelatin; different supports carry unequal portions of the weight. Clearly, 
the edges sag between the support points. 

The supports underneath can be placed near the edges, causing the center to 
sag, or near the center, causing the edge to bend down. They can be placed at 
70% the radius, which causes the least deformation, but a more complex one. 
We can split each prop into 3 or 6, but what tradeoffs do we have to make? 
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That accounts only for the platform. What about the edges? If we screw on 
the edge supports too tightly, the surface pinches down around the three support 
positions. The clips could be properly adjusted, but when the telescope heels 
over, one clip may be forced to apply unusual pressure by the weight of the 
slab. Edge mounting has been solved a number of ways, ranging from the 
elegantly simple hanging-strap method used in Dobsonian mountings to a 
mercury edge-bag used in a few large equatorial reflectors. 

Telescope mechanical design is far beyond the scope of this work, however. 
Only one example of surface deformation will be presented. Surface 
deformations cause an infinite variety of star-test patterns, none resembling the 
others. They may share some of the following characteristics: 

1. They can be distinguished from turbulence because they are fixed 
patterns. 

2. They often show 2, 3, or 6-fold symmetry. 

3. They are usually weaker at high telescope elevations than low ones. 

4. The pattern distortions may invert on passage through focus. 

Although more common in reflectors, optics pinching is not unknown in 
refractors. One refractor I examined suffered a problem with a coupling agent 
used between the lens element. The material hardened or bunched up in three 
locations, yielding a star-test pattern similar to the classic three-point pinched 
mirror cell. See Fig. 8-1. 

 
Fig. 8-1. Star-test pattern taken through a large refractor. Its three-sided symmetry betrays a pinching 
effect. When repairing this problem, the maker reported that the optical coupling agent was causing 
undue pressure on the lens. 

Also, lens cells have to be made a bit larger than lens elements to account 
for the more severe shrinkage of metal with cooler temperatures. Glass 
constricts, but it does not shrink as much as metal. If the cell is made too small, 
the optics can actually be squeezed at low temperatures, resulting in an 
astigmatic or otherwise deformed image. If temperatures drop too low. a tight 
cell can crack the lens like an egg. 
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8.2    The Aberration Function 

There are as many forms of surface warping as there are optical surfaces, but 
only one will be modeled here. The arbitrary choice will be clip pinching or 
perhaps a thin mirror that has too few bottom supports. What characteristics 
must the model have to simulate the effects of tight mirror clips? First of all, it 
must be strongest near the edge. If the optics deform, they can do so most 
easily at the edge. Second, the aberration function should have a tripartite 
symmetry. Optics, of course, can deform in other ways than the three-lobed 
pattern. However, since mounting cells usually have a three-sided aspect, such 
deformation is common. 

Without physical justification, one can choose a softened1 cycloidal de-
pendence in angle and a third-order radial dependence to yield the aberration 
function shown in Fig. 8-2. The attractive feature of this pupil function is the 
asymmetry of the deformation; it ranges from creases in the valley to flat-
topped humps. The aberration function could have been made symmetrical in 
the valleys and peaks, sort of like "three-lobed" astigmatism, but we will see 
astigmatic behavior later, so it would be redundant to dwell on it here. 

 

Fig. 8-2. An aberration function of pinched or deformed optics. 

8.3    Filtering of Pinched Optics 

Figure 8-3 depicts the modulation transfer functions of two unobstructed 
pinched systems. Because the pupil function is not neatly symmetrical, the 
transfer varies with the angle at which we place the lines of the MTF target. 
The figure shows three transfer functions, corresponding to bar patterns at the 
vertical, horizontal, and 45° angles. The MTF for this particular surface 
deformation is very similar to that for defocusing. 

__________________________________ 
1The form used was a "curtate" cycloid. See the Glossary. 
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Filtration by pinched optics 

 
0.0 0.2 0.4 0.6 0.8 1.0 

Fraction of maximum spatial frequency 

Fig. 8-3.   MTF degradation for three-lobed deformed optics. 

The least pinched curves of Fig. 8-3 yield a Strehl ratio of 0.8 (the same as 
1/4-wavelength spherical aberration error). Because of the details of this 
aberration function, however, the total pinching aberration is 0.4 wavelengths. 

Doubling the total aberration to 0.8 wavelengths, the curve is stretched even 
further downward. At low spatial frequencies, such a telescope preserves 
contrast about as well as a perfect aperture of 60% the diameter. 

8.4     Diffraction Patterns of Pinched Optics 

In Fig. 8-4, we see the star-test patterns expected from a warped reflecting 
telescope that has a 25% central obstruction. At focus, the diffraction rings are 
squeezed together into knobby radial spikes. 

Such perfectly balanced patterns will probably not be visible in real 
telescopes. One pressure point seldom induces precisely the same aberration as 
any other. Also, each deformed surface will display its own unique properties. 
One tricky pattern not handled by this model is a 6-sided spiking on one side of 
focus and a muted polygonal shape on the other. I witnessed this problem years 
ago when a mirror was screwed too tightly into a 9-point cell. 

Nevertheless, this problem is easy to diagnose using the characteristics 
mentioned above: 
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Fig. 8-4. The star-test appearance of a deformed or pinched aperture of 0.4 wavelengths total 
aberration. Normal behavior is in the column to the right. Obstruction is 25%. 
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1. See if the warping changes with time. If it is a fixed, unchanging image 
distortion, it cannot be caused by local heating, tube currents, or 
atmospheric effects. Look again in 15 minutes. Air optics change dra-
matically; pinching does not (unless the squeezing changes markedly 
with temperature). 

2. Count the points around the perimeter. If you count 3 or 6, the mechanical 
supports are probably to blame. Three or 6-fold symmetry 
just isn't ground into the glass that often. Two-fold symmetry indicates 
pressure from one direction, or it could be an actual astigmatic 
error in the glass. If two-fold asymmetry is found, try to identify the 
axis of the astigmatism by putting your hand into the beam the same 
as you did during alignment. If the axis of the warping is precisely 
vertical, you can usually assume that either you are incredibly unlucky or 
the astigmatism results from gravitational forces applying 
non-uniform pressure.2 

3. Shift the telescope to look at a star near zenith. The easiest confirmation 
that your difficulty is caused by mechanical supports is simply to 
change the direction of force on the optics. If the deformation lessens 
or changes, it could mean that the supports are warping the disk. In 
any case, it is rare not to change at least the magnitude, if not the 
flavor, of warping merely by changing the angle of the telescope. An 
exception is a pinched Schmidt-Cassegrain corrector plate. Because 
the plate is held so firmly, it gives the same distorted image at any 
angle. 

4. Rack through focus. Some warped star-test patterns are similar to 
astigmatism on opposite sides of focus. If "points" in the image on one 
side become flat regions on the other, something could be straining 
the optics. Other deformations do not exhibit this behavior, however. 
It did not appear in Fig. 8-4, so it is not always a reliable indicator 
of pinching. 

8.5     Fixing the Problem 

The rest of the discussion will assume you have a reflecting telescope 
suffering from poorly held optics. Such a problem is rare in refractors, and you 
can do little about it anyway, except return the lens to the manufacturer for 
servicing. 

If you see a two-lobed image warping in a Newtonian reflector, you could 
have the astigmatism in either the primary mirror or the diagonal. You need 

________________________________________ 
2 See Chapter 14. 
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an easy way to isolate the problem to the offending mirror. Rotate the tube by 
20° — 30°. If the deformation seems to be fixed at the same angle in the 
eyepiece, the problem is probably contained within the diagonal, because it 
rotated too. On the other hand, gravity has changed its direction with respect to 
the tube. If the pattern seems to have rotated by the same angle, or has 
otherwise changed, it is probably in the main mirror supports. 

Nowadays, the telescopes that are often in the most danger of suffering from 
warped optics are large, thin-mirror Newtonian reflectors. Tube angle cannot be 
changed in many such instruments, so you can't isolate the origin of the 
aberration by the simple expedient of rotating the tube. Fortunately, patterns 
seen in thin-mirror reflectors should change drastically with elevation. Try 
comparing the appearance of a defocused star just above the horizon with one 
nearly overhead. If the appearance changes markedly, the most suspicious 
support is the one carrying the most weight—the main mirror's. 

If the telescope is troubled by warping, you are better off to try mirror cell 
repairs blindly than to do nothing. First, you should verify that the mirror clips 
are not pressing down on the surface. Optimally, mirrors are not even held by 
such restraints. The purpose of mirror clips is to prevent catastrophic damage 
during transport and storage, acting as stops so the mirror does not fall face 
down in the tube. When the telescope is in operating form, these clips should 
hover above the surface. 

You should make sure that the side supports are slightly loose. In many 
mirror cells, the clips and the side supports are the same units. Since most 
mirror cells are made to fit a nominal-sized mirror, the side supports are 
somewhat adjustable, either using a plastic set screw or by adding thin shims to 
the clip mount. 

What you want to avoid is a situation where the mirror is held by excessive 
force, other than its own weight. One mirror cell I inspected a few years ago 
had too many shim washers removed from the combined clip and edge 
supports. This clip was attached with a screw, and the mirror was halting the 
screw before the metal of the cell did. In effect, the owner was tightening the 
side of the mirror down with a wrench. 

If the mirror rattles a little when you shake the cell, it is mounted properly. 
Try for less than 1 mm of motion in any direction and even less vertical travel. 

Thin, large mirrors in altazimuth Dobsonian mountings should not be held 
at the edge by point-like restraints. Their own weights induce unacceptable 
stresses. Thin mirrors should hang in a strap. But even if your mirror is held 
by a belt, it may still be maladjusted. In one telescope I saw, the strap had 
slipped and the mirror was sitting on the side of the box. Also, the belt should 
never support more than 50% of a mirror's cir- 
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cumference or hold the mirror too tightly. Some mirrors are held with a strap 
that is tightened by a screw, similar to an automobile radiator hose clamp. Such 
mounting methods should be replaced or modified, because they squeeze the 
mirror excessively. 

Of course, few acceptable cell designs exist for large thin mirrors supported 
in equatorial mountings. As the instrument tracks across the sky it also executes 
a rolling motion. Thus, the direction of gravity changes orientation with respect 
to the cell. Besides the mercury bag solution mentioned earlier,3 makers have 
tried many other tricks to avoid undue pressure at points on the edge. The most 
common of these is gluing the mirror to the underneath supports, dispensing 
with edge holders and clips entirely. Even flexible aquarium cement 
occasionally suffers problems. Gluing the mirror down this way opens the 
possibility of other pressures being applied by deformed mounting plates. 
Perhaps you may be able to tune such a mirror to work properly in some areas of 
the sky, but most likely you will have to live with at least a little warping. 
Compromises are sometimes unavoidable when choosing to mount such a large, 
floppy mirror equatorially. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________ 
3 This method involves large amounts of toxic mercury, a procedure that can be used safely 

only by professionals. 



Chapter 9 

Obstruction and Shading 

Modifying the transmission of the aperture pupil causes changes to the 
diffraction pattern. Obstruction and shaded transmission are not deformations of 
the wavefront in the same sense as aberrations. They can occur in officially 
"perfect" apertures. Nevertheless, they can affect the perceived image quality in 
a very similar manner. 

Five main points are made in this chapter: 

1. Central obstructions below 20% of the aperture are indistinguishable 
in practice from an unobstructed aperture, and for obstruction under 
25%, performance can be very good. 

2. Reckless efforts to reduce central obstruction can lead to even worse 
images than those resulting from obstruction. 

3. A spider in front of an aperture hurts the image only for dim objects next 
to bright sources of interference or for low contrast objects 
imbedded in an extended field. For most dark-field observing, the 
spider's effect is only cosmetic. 

4. Darkening the outside portion of the aperture results in contrast 
improvements at low spatial frequencies, but only at the expense of high 
spatial frequencies. 

5. Dust and scratches are cosmetic errors, similar to spider diffraction 
except for certain types of observing. 

9.1    Central Obstruction 

The most obvious and potentially the most damaging kind of transmission 
change is caused by the centrally placed diagonal or secondary mirror. 
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Some observers are almost fanatical about central obstruction. In various astronomical 
publications, they have made blanket statements such as "obstruction reduces contrast" 
without giving the spatial frequencies at which that reduction occurs. They imply that 
obstruction so severely damages the image that no amount can be tolerated. 

However, the negative consequences of central obstruction can be readily and 
precisely calculated. We will see that they worsen considerably beyond a fractional 
obstruction of 20 to 25% of the aperture. As long as the obstruction is kept inside that 
fraction, the image closely approximates that of an unobstructed telescope. 

Fractional transmitted encircled 
energy compared to perfect aperture 

 
Angle (Airy disk edge at 1.22) 

Fig. 9-1. The transmitted encircled energies of centrally obstructed apertures divided by the 
encircled energy of an unobstructed aperture (later called the encircled energy ratio, or EER). The 
performance drops off sharply at 20-25% obstruction. 

Figure 9-1 does not illustrate contrast but the closely related topic of encircled 
energy. In Fig. 9-1, the normalized encircled energies of the obstructed apertures are 
divided by the normalized encircled energy of a perfect circular aperture. Thus, the 
obstructed aperture ratios deviate from an ideal value of unity. 

As the circle approaches the radius of the unobstructed Airy disk at 1.22, these ratios 
fall. The spot size is smaller in obstructed instruments, and the energy robbed from the 
core diffraction spot is mostly deposited in the first one or two diffraction rings. While 
the obstructed pattern is crossing the minimum between the central disk and the first ring, 
it encloses little additional energy and the unobstructed pattern gets ahead of it. Not 
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unobstructed 25% obstruction 5

50% obstructed 75% obstructed 5

Fig. 9-2. The in-focus diffraction patterns resulting from central obstruction. 

until the circle encloses the first rings of both patterns does the ratio begin to 
recover. 

In the focused diffraction patterns of Fig. 9-2, the intensities of the rings 
swell as obstruction is increased. By the time a 75% obstruction is reached, all 
pretense of optical quality is lost. Paradoxically, the diffraction disk is smaller. 
All of these images are calculated at the same scale and printed with the same 
central intensity, so this shrinkage cannot be explained as an artifact of the 
reproduction. This phenomenon is real. In fact, the narrowest central disk is 
found in an aperture that is almost entirely obstructed, but the powerful rings 
caused by such an aperture render it useless for fine imaging. 

Filtering appears in Fig. 9-3. Again, the bottom does not drop out at middle 
frequencies until the obstruction is beyond 25%. An obstruction diameter under 
20% of the aperture can be viewed as acceptably small. The narrower spot size 
shows itself as an increase in the MTF at high spatial frequencies; contrast here 
exceeds even the value for a perfect aperture. 
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Fraction of maximum spatial frequency  

Fig. 9-3. MTF curves of simple central obstructions. 

These curves demonstrate that a little breathing room is available between 
20% and 25% of the aperture. The negative effects of central obstruction have 
begun to show themselves, but they are saving their full fury for obstructions 
beyond 30%. Any aperture that is 25% obstructed can be very good, and 
telescopes that block 20% of the diameter can be excellent. Instruments that 
have been modified to achieve less obstruction than 20% are obtaining very 
little contrast gain and are risking other optical problems. (See the end of 
Chapter 10 for more information on the degradation caused by obstruction in 
the presence of spherical aberration.) 

In the absence of hard knowledge about the tolerable obstruction, telescope 
makers often cure this difficulty by immoderate measures. Commonly, they 
build Newtonian telescopes with overly squat focusers and minimum-size 
diagonals. 

Unfortunately, reducing diagonal size often forces a compromise with the 
operation of other useful features of the telescope. Perhaps it even cuts into an 
unforeseen safety margin. For example, a long focuser tube baffles external 
light. Some telescopes are designed with eyepieces set so low that light can 
enter them directly, a problem especially common in open-tube telescopes. 
Another difficulty arises when a Barlow lens must be used. The focus should be 
far enough away from the optical path that the Barlow won't jut out in front of 
the mirror. 

The diagonal is also prone to curvature near its edge, so telescopes that 
require every bit of the diagonal for on-axis imaging often have reduced 
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quality. Certainly, small diagonals cause vignetting, and observers must be 
careful to make sure that the outer parts of the field of view are adequately 
illuminated for their favorite objects. 

Thus, a well-meaning effort to improve contrast by reducing the diagonal 
size might have the opposite effect. The instrument may be so malformed by 
such efforts that contrast is much worse than it would have been with a slightly 
larger obstruction.1 

9.2    Spider Diffraction 

The support hardware that holds a secondary mirror causes some light 
diffraction. For linear spider vanes, the pattern takes the form of two or more 
radial spikes away from a point image. Spider diffraction takes a bright, 
extended image and smears it to either side. 

Contrast is reduced, but by how much? Clearly, if the area of the vanes is 
not large when projected against the mirror, the spider cannot be scattering 
much light. That light looks brighter because it is blurred in only a few 
directions. 

The MTF of a spider with vanes of thickness 1/128 the diameter of the 
mirror appears in Fig. 9-4 (this MTF is compounded with the degradation of a 
20% obstruction). The thickness is 1/16 inch (nearly 2 mm) for an 8-inch (200 
mm) mirror. Usually, small telescopes have vanes less than half that thick. 
Even so, the contrast is degraded only about 1.6% at first. The area of the 
vanes is also 1.6% of the aperture's area. Thus, a simple relationship exists 
between the area of small-scale obscuration and the amount of abrupt 
degradation in the MTF. 

Spider diffraction causes the quick drop of the MTF, and thereafter the 
degradation is about a constant fraction of the normal behavior.2 One can see 
from the very slight decrease that spider diffraction is a cosmetic defect for 
most dark-field observation. Only in exceptional situations does it significantly 
affect image contrast. If, for example, a dim star resides in the spider 
diffraction spike of a bright companion star, this light could become a 
problem. The spider diffraction does not cause difficulty if the dim star is 
alone or at a different angle to the spike, but because the nearby star is so 
bright, the spike may illuminate the whole area around the dim star. 
Fortunately, many telescopes allow rotation of the spider or tube. 

_____________________________ 
1 These examples are not meant to imply that a small secondary mirror is not a laudable goal. If 

telescope designers are aware of the risks, they can avoid them. The key is not to reduce the 
secondary size to the exclusion of every other optical consideration. 

2 For modulation patterns at 45°, the MTF will recover at 71% the maximum spatial frequency 
and even slightly exceed the value expected in its absence. MTFs for horizontal or vertical bar 
targets display less violently-changing structure. See Zmek 1993. 
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Fraction of maximum spatial frequency 

Fig. 9-4. Modulation transfer function for spider diffraction. The degradation is slight compared to a 
spiderless 20% obstructed aperture. The lowest curve is for an MTF pattern at 45° to the vanes. 

On extended bright objects such as planets, spider diffraction causes a much 
subtler degradation. Each point on the object has its own spikes. Low contrast 
details can be washed out by weak light diffracted from the spider. A realistic 
thin-vaned spider has a surface area of about 0.5% the area of the aperture. 
Thus, the signal-to-noise ratio could be as low as 23 dB. Luckily, much of the 
stray light is beyond the edge of planets. If the vanes are as narrow as 0.5 mm, 
the width of the diffraction spikes is about 100 arcseconds. Spider-vane 
diffraction would greatly exceed the size of even a large planetary image, such 
as the 50 arcsecond angle subtended by Jupiter during oppositions. SNR 
exceeds 30-40 dB for planetary observation. Light diffracted from spider vanes 
becomes troublesome chiefly for lunar and solar observations, where the extent 
of the image is larger than the angle of diffraction. 

Despite the conclusions from Fig. 9-4, spider diffraction can be an im-
portant design consideration. If the diagonal support vanes are much too thick, 
the diffraction spikes become brighter. More area of the mirror is intercepted, 
and more light is diverted. Thicker vanes also have shorter diffraction spikes. 
Since the light diffracts into a smaller area, it is relatively brighter. 

You can see the effect of a wide spider vane by stretching a strip of black 
electrical tape across the front of your instrument (this experiment even works 
for refractors and Schmidt-Cassegrains—just keep the tape away from the 
lens). Direct the telescope towards a bright star and use a medium- 
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spider width 1/128 no spider 20

Fig. 9-5. An "overexposed" monochromatic spider diffraction pattern compared with the same 
pattern calculated with no spider. 

to-high magnification eyepiece. You should see a bright spike of light at right 
angles to the tape. This spike glistens with sparkles of color. If the star is bright 
enough, the spike fades out with increasing distance from the star and then 
brightens again, perhaps doing so many times. You're observing the side peaks 
of spider diffraction, similar to the rings of circular aperture diffraction. 

Another design mistake is the use of extremely thick, curved-vane spiders 
or a diffraction-spike suppression mask. Two such masks were suggested by A. 
Couder using curved-edge vane covers (Ingalls, Book Two 1978, p. 620). The 
images don't suffer the diffraction spikes caused by conventional spiders, but 
an increased level of scattered light is still there—just spread around in angle. 
In imaging of extended objects (such as planets), it doesn't matter whether the 
light is confined to a diffraction spike or has been averaged over various 
angles. Contrast is lowered the same amount. The most important factor is the 
fraction of the mirror such vanes cover. The only acceptable change to spider 
vanes is the use of thin curved-vane spiders, or eliminating them entirely by 
supporting the secondary on an optical window. 

A focused spider image is shown in Fig. 9-5. This rendering is not a very 
realistic picture because it is calculated for monochromatic light, such as a 
laser would produce. The dips in the spikes will be filled in with other colors 
in white-light images, giving only a hint of structure. 

While spider diffraction is only a minor annoyance for small telescopes, it 
can become a major object of concern in the design of large instruments. 
Because mechanical structure does not scale linearly, the support requirements 
of large reflector secondaries can be very great indeed. Heavy Cassegrain 
secondaries must be supported rigidly enough that alignment 
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does not suffer. Thick vanes are necessary, and diffraction from the vanes 
becomes considerable (Beyer and Clune 1988). 

One should make certain at the end of coarse alignment that the secondary 
support vanes present the minimum interception area to the beam of incoming 
light. This maintenance costs nothing, and can improve the image substantially. 

9.3     Shading or Apodization 

Diffraction rings are among the most objectionable features of the perfect 
circular diffraction image. This problem is perhaps most observable at the 
boundary between a bright area and a dark sky background. If seeing is 
sufficiently good, this boundary does not appear sharp, but shows "echo" 
images, one or more thin lines at the edge. Observers must be aware of this 
phenomenon, or else they will report spurious detail in the image. It is 
particularly prominent in images that are strongly colored or viewed through 
color filters. Planetary disks display limb-darkening, so this effect is difficult to 
notice at the edge of a planet. However, the problem is observable elsewhere 
and is always a source of interference with any clustering of spotty detail. 
Several diffraction rings may add to create another spot where one didn't exist 
before. 

Changing the transmission characteristics of an aperture is called 
apodization. "Apod-" literally means "without feet" and refers to a shading of 
the entrance pupil that results in lowered diffraction rings. Apodization existed 
informally before it was named. Jacquinot and Couder made a one-dimensional 
apodizer in the 1930s to suppress the dim side lines that appeared next to bright 
lines on spectrographic plates (Jacquinot 1958). 

R.K. Luneburg widened the definition of apodization by suggesting a set of 
generalized problems that don't necessarily lead to smaller rings but induce 
modifications of the diffraction pattern to optimize any given characteristic.3 
Based on Luneburg's investigations, it can be stated with some confidence that 
the best pupil shape in most cases is an unobstructed one (Luneburg 1964, pp. 
344-359). One can set any sort of condition on the diffraction image, however, 
as long as some other parameter is allowed to swing freely. 

For example, the diameter of the central spot can be minimized if the height 
of the diffraction rings does not matter. In fact, G. Toraldo di Francia designed a 
complex pupil shading that results in arbitrarily fine resolution and suppression 
of diffraction rings out to a specified radius (di Francia 1952). Unfortunately, 
such a shaded pupil is fantastically inefficient for all 

_________________________________ 
3 For this reason, I personally prefer the term shading, which comes from antenna and acoustic 

array theory. 
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realistic apertures, diverting most of the energy of the beam to a bright ring 
beyond the specified radius. The field stop must be inside of this radius to 
prevent the bright ring from dazzling the super-resolved star. 

Similarly, C.L. Dolph (1946) derived a shading technique for linear-array 
radar antennae that balances resolution and diffraction. It also works for slit 
apertures. Dolph's technique features arbitrary suppression of side lobes to a 
specified level surrounding the central peak. This method is also inefficient but 
helps most for strong sources where interference from multiple directions is 
troublesome. 

An early systematic investigation into partially transparent coatings of lenses 
to achieve enhanced resolution was made by Osterberg and Wilkins in 1949. 
They were able to theoretically achieve a central spot diameter only 77% that of 
the usual Airy disk. The Strehl ratio of such an aperture is 0.21, so this 
resolution comes at considerable optical costs. The first diffraction ring is about 
1/10 as high as the central peak. This behavior is similar to that of the 
obstructed apertures mentioned earlier, but it is carefully optimized to do the 
least damage and at the same time achieve the highest resolution. 

All of these advanced solutions have the same general features: high-
resolution pupils look like soft-edged obstructed apertures, while low 
diffraction-ring pupils become darker toward the outside in a slow taper 
(Barakat 1962; Jacquinot and Roizen-Dossier 1964). 

Also, these advanced techniques generally don't feature simple shading, 
such as would be provided by a variable strength neutral-density filter 
(particularly for resolution enhancement). They shift the transmission back and 
forth between positive and negative. Admittedly, the notion of negative 
transmission sounds odd. One imagines light springing from the eye and going 
back through the telescope in a reversed direction. The truth makes more 
sense—negative transmission refers to places on the aperture where the phase 
is reversed, or areas that have a uniform aberration of ½ wavelength. Of course, 
jerking the aperture to both sides of the phase severely reduces central spot 
intensity. Such filters are also difficult to make. 

The only pupil shading considered here is a truncated Gaussian function. 
The Gaussian is the familiar bell-shaped curve representing statistical 
deviations in measurements. It is similar to the curve teachers sometimes 
consult when they assign students' grades. A Gaussian aperture starts with full 
transmission at the center and gradually tapers off until the edge is reached. 
The transmission coefficient of an aperture pupil is modeled by 

,)(
22 / weT ρρ −=  (9.1) 

where ρ is the radial coordinate and w is related to the width of the Gaussian. 
Figure 9-6 shows this transmission pattern.   The word "truncated" 
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Normalized radial coordinate 

Fig. 9-6. The transmission coefficient of the Gaussian pupil as it varies with radius. The outside of 
the aperture is at a radius of 1.0. 
refers to the sharp drop at the outside edge of the aperture. As the width is 
decreased, this drop is less important, but the clear area in the center of the 
aperture decreases with smaller widths. If the transmission at the edge of the 
aperture is small, the usable window is also smaller. 

The Gaussian function has a unique mathematical property. When one 
calculates the diffraction pattern of a perfect circular aperture, the result is a 
complicated expression that goes through many oscillations—the cause of 
diffraction rings. When the same calculation is made for an untruncated 
Gaussian-shaded pupil, the result is another Gaussian. Once a Gaussian 
function dies away, it does not rise again. Therefore, the diffraction pattern has 
no rings around it. 

If the Gaussian function has a small drop-off at the edge (as it does for the 
truncated examples in Fig. 9-6), the rings reappear, but they are strongly 
suppressed. Figure 9-7 shows the focused appearance of a truncated Gaussian 
with w = 0.75ρ. First, note that the pattern is definitely a bit larger. Second, 
muted rings remain around the central spot. If we turn the pattern sideways, the 
longitudinal slice of the diffraction pattern from this truncated Gaussian pupil is 
seen in Fig. 9-8. We still see nodes, but this behavior is severely diminished. 
Another interesting characteristic of this diagram is the boxy appearance of the 
central lozenge. Compared to the regular aperture, the image seems to display a 
cohesiveness more tolerant of defocusing. 
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Fig. 9-7. In-focus pattern of perfect unshaded and truncated Gaussian pupils. 
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Fig. 9-8. Longitudinally sliced image pattern of a normal and Gaussian pupil. 

What sort of changes to the image take place? The encircled energy of a w 
= 0.75ρ truncated Gaussian appears in Fig. 9-9. Remember, this diagram is 
corrected for the simple darkening of the aperture. Thus, the ratio of the 
encircled energies goes to 1 as the circle becomes very large. Amazingly, the 
ratio for the Gaussian-apodized aperture sweeps upward to enclose more of 
the transmitted energy than the normal aperture over most of the range. 

This strange behavior is related to the suppression of diffraction rings. For a 
Gaussian pupil, all of the stray energy that normally is in distant portions of 
the image has already been gathered. A normal pupil encloses only 83.8% of 
the energy in the Airy disk, 91% inside the edge of the first ring, 93.8% inside 
the edge of the second ring, 95.2%, 96.1%, and so forth. Gaussian pupil 
transmission is the same as taking a broom and traveling around the image, 
sweeping all of the remaining intensity toward the center. This sweeping is 
not as tidy as one would like, so the energy raked inward is piled up at the 
edge of an enlarged diffraction disk. 
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Angle (1.22 is Airy radius of unshaded pupil) 

Fig. 9-9. Encircled energy transmitted by a truncated Gaussian pupil compared to a normal 
unobscured pupil. 

Figure 9-10 shows the effect on filtering. Gaussian transmission enhances 
low spatial frequencies at the expense of high ones. The lowered response at 
high spatial frequency is understandable if one remembers that the central spot 
is bulkier. The enhancement at low frequencies is related to the gathering of 
energy from distant portions of the image. Low frequency modulation targets 
have wide bars. If the energy is piled close to the center of the diffraction disk 
rather than spread out, less light leaks from the light areas into the dark ones. 

Thus, Gaussian apodizers will not show detail very near the resolution limit 
of the telescope with higher contrast, even though the diffraction rings are 
suppressed. On the other hand, much of an image's content is at low spatial 
frequency. The Gaussian filter will help the contrast of features that don't 
require every scrap of the resolving power. Another useful benefit of lowered 
diffraction rings is resolution of unequal double stars just outside the resolution 
limit, where the bright ring is inconveniently coincident with the dim star. For 
general extended images, however, making the rings less apparent does not help 
high resolution. 

Apodization came to amateur astronomy with a series of letters and articles 
in the "Amateur Astronomer" column of Scientific American in the early 1950s. 
These articles culminated with a suggestion for pupil shading using layers of 
periodic screening (Leonard 1954). This suggestion was a clever and practical 
way of achieving a peaked pupil shape. 

In spite of their mixed performance on the MTF chart, apodizers have been 
used in planetary viewing for many years. They have been vigorously 
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Fig. 9-10. The MTF of a w = 0.75p truncated Gaussian pupil. The normal MTF is plotted also for 
comparison. The Gaussian shifts the frequency response from high spatial frequencies to low ones. 

promoted by several amateurs, who claim that they are useful as "seeing" 
filters, although their explanations of the cause differ (Van Nuland 1983; 
Gordon 1984). This popularity, even though it has been confined to a small 
number of observers, is difficult to dismiss. 

Is there a mechanism by which these filters can act to steady an image? 
Edberg (1984) suggested some indirect benefits, including stopping down the 
aperture, lessening the dazzling brightness of the planets, and covering poor 
optical fabrication. Gordon (1984) suggested that the moving rings associated 
with turbulence blur over into the Airy disk. If no rings are present, this 
blurring is reduced. 

Another article suggested that a Gaussian filter could shift contrast rendition 
from high spatial frequencies—where turbulence was destroying the image 
anyway—to low spatial frequencies. Thus, coarser details that were still visible 
through the turbulent atmosphere were being rendered with higher contrast 
(Suiter 1986b). The MTF of a circular aperture troubled by turbulence 
provides evidence for that claim. Figure 9-11 illustrates the Gaussian pupil 
transmission MTF for a single moment of turbulence. 

This figure shows how contrast is being shifted. Below a spatial frequency 
of about 0.4 maximum, the Gaussian-filtered system performs better than the 
open telescope. Below 0.1, the Gaussian-filtered instrument transfers contrast 
better than a perfect unaberrated system. 

For example, a perfect 10-inch (250-mm) telescope can resolve MTF tar-
gets with bars separated by about ½ arcsecond. However, when troubled 
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Fig. 9-11. Improvement of the contrast transfer of low spatial frequencies for a w = 0.75ρ Gaussian-
filter pupil suffering from 0.15 wavelengths RMS of turbulence aberration. The same aperture when 
unshaded is also shown. A single MTF orientation angle during one snapshot is depicted. At higher 
spatial frequencies, the curve is unstable. 

by 0.15 wavelengths RMS turbulence, the MTF curve fluctuates wildly for bars 
separated by about 0.8 arcseconds and below. We may then choose to throw away 
contrast at high resolutions—where the behavior is unreliable anyway—and shift it down 
to spatial frequencies where it can be profitably used. With Gaussian filtration, bar 
separations of about 1.5 arcseconds and higher are imaged with higher contrast than the 
unapodized aperture. Above 4 arcseconds, the apodized aperture is behaving better than a 
perfect circular aperture on a steady night. 

Thus, a Gaussian apodizing filter does seem to help during bouts of poor seeing, but 
it does so only in a backhanded manner. The seeing filter is perhaps useful in order to 
transform bad seeing to passable, but for critical resolution nothing less than steady skies 
and full aperture are necessary. 

9.4     Dust and Scratches on the Optics 

We can formally use the admittedly esoteric topic of superposition of apertures to 
explain the effect of central obstruction. The central obstruction can be mathematically 
replaced by a negative oscillating aperture that just cancels the positively oscillating area 
of the full aperture on top of it— Babinet's principle. This procedure works the same for 
lesser obstructions such as dust particles, only in this case, the dust grains or scratches act 
like a myriad of pinhole or short slit apertures. 
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Tiny pinholes and slits do not have good resolution. They emit a diffuse 
glow that is spread throughout the field of view. This behavior is observable in 
certain benchtop experiments. If a bright image is barely hidden from view by a 
straightedge (as in a Foucault test), dust flaws can actually be seen shining on 
the darkened aperture. 

We can predict the curve of the modulation transfer function without 
calculating it. It is very similar to the MTF calculated for spider vanes. If an 
outrageous fraction of the mirror or lens were covered with dust or scratches 
(say, 1%) the contrast would lurch down suddenly by 1%. After that, the 
degradation of the MTF would remain fairly constant. The reason for the 
sudden drop is simple. The MTF must always start at 1, but the diffuse glow 
affects narrow bars and wide ones equally. Not until the bars are very wide 
does the leakage from a bright bar not extend over the dark region. 

Apertures with 1% of their area covered with dust are very grimy optics 
indeed. Nearly everyone keeps lenses and mirrors cleaner. Imagine how 
spotted the optics would look if, for each square centimeter, 1 square 
millimeter (about the area of the head of a pin) was blocked. A 200-mm 
aperture has an area of over 314 cm2. Sprinkling salt on the mirror or lens 
could scarcely produce 1% obstruction. 

Dust and scratches, like spider diffraction, are mostly cosmetic errors except 
for unusual situations that feature bright, non-interesting objects close to the 
object to be observed. If a dim deep-sky object were observed quite near a 
dazzling star (NGC 404 behind Beta Andromedae or NGC 2024 near Zeta 
Orionis, for example), then the diffuse glow surrounding the bright star would 
invade the image of the dim object. Observing tricks, such as obscuring the 
star behind a field stop, can diminish scattering in the eyepiece and the eye, but 
if the main lens or mirror is dusty, the damage is already done. The stray light 
will peek out beyond the edge of the stop anyway. Excessive dust on the optics 
can also damage the detection of low contrast details on bright extended 
objects, such as planets, because the scattered light exists in a general haze. 

The maximum amount of dirt the observer should tolerate on the optics is 
about 1/1000 of the surface area. We have already seen in Chapter 3 how this 
can lead to signal-to-noise ratios as low as 30 dB.4 Luckily, most of the 

_____________________________________ 
4 Conventionally, noise varies with time and is random in location. Thus, my calling scattered 

light "noise" is incorrect in the sense that light scattering appears motionless and is completely 
determined by details at the aperture. Nevertheless, I use the concept of the signal-to-noise ratio 
because scattered light similarly degrades the quality of the image. SNR is used throughout this 
book to compare a scattered or diffracted haze of light with the underlying "true signal," giving 
relative weights to widely different phenomena. Please remember, however, that such a usage 
should be viewed only as an analogy or beneficial fiction, and it should not be pushed too far. 
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halo extends beyond the edge of a planet. Hence, much of the scattering is ugly 
but not harmful. Like spider diffraction, the worst SNRs are reserved for very 
large bright-field objects, such as the Sun and Moon. It is difficult to estimate 
the fraction of the optics covered by dirt, but 1/1000 of the area is the size of a 
single obstruction about 1/30 of the diameter. On a 200 mm mirror, the 
accumulated grime would cover a spot 7 mm across—slightly smaller than the 
size of your little fingernail. Even a telescope that is that dirty will not 
contribute much additional scattering to a reflector with spider vanes, and the 
tolerance for dirt could perhaps be relaxed somewhat for such instruments. 

The observer should heed one additional warning. Some telescope owners, 
after reading the above comments, might be tempted to clean their mirrors or 
lenses too frequently. Optics possess delicate coatings for which the safest 
prescription is to leave them alone. Overuse of even the most gentle of cleaning 
materials leaves a myriad of tiny scratches in coatings. Don't decide to clean 
mirrors on the basis of shining a light down the tube at night. All mirrors fail 
such a harsh inspection. 

The best procedure for clean optics is not washing but prevention. Keep 
them covered and dry. Clean them only when you believe they have been 
chemically attacked or when the dust begins to visibly affect the images. Of 
course, specialized observers might need cleaner surfaces at all times, but no 
doubt these people have already learned of the considerable risks and expenses 
involved (more frequent aluminization, etc.). By following good maintenance 
procedures, you should not have to clean optics very often.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________________________ 

5 Frequently, enthusiastic mirror-makers will aluminize a mirror before it is truly polished. 
They are either covered with a haze of pits or have a fuzzy ring out toward the edge. Unfortunately, 
such mirrors cannot be "cleaned" at all and are usually unsalvageable. They need to be returned to 
polishing. 



Chapter 10 Spherical 

Aberration 

The most common error on the glass is called spherical aberration. It resides 
to some degree on all surfaces and need not become debilitating, though that 
depends on its severity. 

The star test for spherical aberration is surprisingly sensitive and easy to 
interpret. This chapter will make five points: 

1. Wavefronts deformed by simple spherical aberration (fourth-order 
curves) are recognizable by noticing that light approximately follows 
the behavior of the ray-optics caustic. On one side of focus, light is 
taken from the outer parts of the out-of-focus disk and deposited at 
its center. On the other side of focus, light taken from the center 
brightens the outermost rings. 

2. The strength of lower-order spherical aberration can be roughly esti 
mated by utilizing a central obstruction and comparing the breakout 
points of the central shadow on both sides. Correction error must be 
the only contributing aberration for this estimation technique to be 
valid. 

3. Higher-order spherical aberrations, although noticeable in star tests 
of certain designs, are practically never seen in pure form. 

4. By calculating the energy deposited within an angular radius of λ/D 
(near the edge of the diffraction disk), the telescope user can usefully 
add together the combined effects of spherical aberration and central 
obstruction. This encircled energy ratio yields a number similar to 
the Strehl ratio, but it includes the degradation of obstruction in a 
single standard. 

5. A quarter wavelength of correction error delivers images of extended 
objects that are noticeably soft, but barely acceptable. 

169 
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10.1     What Is Spherical Aberration? 

Because they seem to have the form of shallow bowls or protrusions, it is 
natural to assume that perfect mirrors and lenses are sections of spheres. 
However, spheres are not the best geometrical form to produce an image. The 
following thought experiment makes this point obvious. Imagine the inner 
surface of a hemisphere as a mirror and light as incident from infinitely far away 
on the right, as in Fig. 10-1. Light striking the edges is hardly deflected; it kisses 
the interior and bounces around the half dome. Light incident more toward the 
center is deflected towards a sort of focus, but the light striking near the axis is 
directed the farthest away. The focus region is expanded in Fig. 10-2 to 
demonstrate that the focus is bent from a geometric point to a horn-shaped 
caustic envelope. 

 
Fig. 10-1. Half-dome spherical mirror. The focus is more poorly denned as the incoming ray 
approaches the edge. 

 

Fig. 10-2. The caustic "horn." 

The original meaning of caustic was "burning," so an optical caustic is at or 
near focus. In ray tracing, the term acquired a slightly different meaning. A 
caustic is a curve or surface along which rays seem to pile up. 
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It refers to locations where the geometric spreading or convergence of a ray 
bundle does not give the correct value of the intensity. Caustics are places 
where one must resort to diffraction theory. 

The type of spherical aberration shown in Fig. 10-1 is called spherical 
undercorrection. With overcorrection, the order is reversed. Centrally incident 
light crosses the axis too near the objective, and light incident at the edge 
crosses the axis at the most distant point. In overcorrection, the horn points the 
other way. 

The best surface configuration to image light varies from telescope to 
telescope. Some objectives, such as compound refractor lenses, correct for 
spherical aberration by bending or separating spherical surfaces. Here the 
designer uses a trick to retain the easily made spherical shape. A similar 
bending occurs in the Maksutov design. The meniscus shell doesn't really 
possess much focusing power because the rear surface has about the same 
curvature as the front. The real purpose is aberration modification. Other 
telescopes share the burden of correcting the main focusing element's spherical 
aberration with an oddly deformed corrector plate, as in the common Schmidt-
Cassegrain telescope. 

For telescopes with only one focusing mirror (i.e., Newtonian reflectors), the 
proper geometric form is a paraboloid. The flat secondary diverts the beam so 
the observer's head doesn't get in the way, but it doesn't actively participate in 
forming the image. The paraboloid is one special case of a family of surfaces 
called conic sections of revolution. 

Classical Cassegrains combine a paraboloidal primary with a hyperboloidal 
secondary to achieve the requisite spherical correction. One can take out the 
secondary mirror of a classical Cassegrain and install a diagonal to use it as a 
Newtonian. The secondary mirror must correct its inherent spherical aberration 
independently. One might reasonably guess that the secondary would have to 
be a convex paraboloid, but the secondary doesn't do the same job as the 
primary, so it must be curved differently.1 

Other Cassegrain-style instruments, such as the Dall-Kirkham type, only 
correct part of the spherical aberration of the whole system in each mirror. The 
convex secondary remains spherical. This small mirror adds a component of 
spherical aberration of opposite sign to a concave spherical primary mirror, but 
the amount is not sufficient to correct the system completely. As a 
consequence, the properly made primary mirror of a Dall-Kirkham is deformed 
to a prolate spheroid (between a sphere and a paraboloid). Dall-Kirkhams are 
popular with telescope makers because the spherical secondary is easy to 
make. However, they suffer severe off-axis coma. 

____________________________ 
1 One peculiar Cassegrain-style design, the afocal Mersenne, has a paraboloidal secondary 

mirror. This curious telescope doesn't need an eyepiece (King 1955, pp. 49-50.) 
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The Ritchey-Chrétien design goes the other way. By putting stronger 
hyperboloidal curves on both the primary and secondary mirrors, the designer 
can achieve a degree of coma correction superior to the classical Cassegrain. 
However, these telescopes are hard to make, and are usually of interest only to 
professional observatories. The Hubble Space Telescope was designed as a 
Ritchey-Chrétien. 

10.2     The Hubble Space Telescope 

The summer of 1990 featured an event making the previously esoteric topic 
of spherical aberration front-page news. The Hubble Space Telescope (HST) 
was revealed to be improperly manufactured. Newspaper reports said that it 
suffered from approximately 1/2 wavelength of spherical aberration and that the 
edge of the mirror was nearly 2 microns (or 2 μm) off. 

At first, these statements were confusing. A 2 μm surface error would result 
in a wavefront improperly curved by about 4 μπι, or about 7.25 wavelengths of 
yellow-green light. If focus is adjusted to the minimum RMS deviation rather 
than the focus of the center zone, that value is reduced by a factor of 4 to 1.8 
wavelengths. 

This number was clarified when an article in Sky & Telescope mentioned 
that the 1/2-wavelength aberration had been measured as a root-mean-square 
(RMS) deviation (Sinnott 1990a). To derive the peak-to-valley value from the 
RMS value, we have to multiply by a factor of approximately 13.4/4, because 
for correction errors 

¼ wavelength (peak-to-valley)         = wavelength (RMS) 
                                       (10.1) 

4.13
1

so ½ wavelength RMS ×         =1.68 wavelength. 

The comparison that is best known to amateurs—with Rayleigh's 1/4-
wavelength tolerance—in this calculation comes to 1.7 wavelengths for the 
Hubble Space Telescope, assuming the 1/2-wavelength RMS error was exact. 

The root cause of the error was an improperly assembled device called a 
null tester used in the manufacture of the primary mirror. This null tester was 
supposed to generate a wavefront with precisely the reverse correction as the 
main mirror. Thus, a mirror that undid that correction would be exactly right. 
Unfortunately, the null tester was spaced incorrectly and presented the wrong 
reverse correction (S&T 1990; Capers et al. 1991). 
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10.3    Generalized Spherical Aberration 

From the point of view of the star test, you don't have to think about the 
form of the optical surfaces, or even remember their long names. Consider 
only the shape of the final wavefront as subtracted from a perfect sphere. This 
difference can be expanded in the form of a simple polynomial function: 

W(p) = A0 + A2ρ2 + A4ρ4 +A6ρ6 · · ·, (10.2) 
where ρ is the radial coordinate with range 0 to 1. The symbol W(ρ) stands for 
the total distortion of that wavefront away from a sphere with a center at the 
focus. If W(p) is zero, then the curves are the same. Let's look at each of these 
terms and the coefficients in front of them (the "A's") and discuss what they 
mean. 

The first is a constant, A0 that only advances or delays the wavefront. We 
can think of this number as the "time" or "phase" constant, and it should be 
chosen so that the comparison sphere is not too far removed from the 
wavefront. This constant represents propagation, with different values of A0 
representing snapshots taken at different times. Usually, the constant is set to 
zero just as the wave passes through the aperture or else adjusted for 
convenience. 

The term A2ρ2 is a smooth bending, either pushing the wavefront in a small 
amount or pulling it out somewhat. If our reference sphere has its center 
placed at the wrong focal point, this term bears the brunt of the increase. Thus, 
A2ρ2 is called the "defocusing aberration" here and is the same one appearing 
in Fig. 4-15. 

The A2 defocusing term can be conceptually included in the spherical 
aberration expansion, and from the point of view of star-testing, defocusing 
should be considered as just another aberration. However, defocusing is not a 
feature of the glass, so it isn't customary to refer to it as a spherical aberration 
term. Defocusing is so important that it is set aside and considered separately. 

The fourth-order term, A4ρ4, is what is usually thought of as spherical 
aberration. Another name for this term is primary spherical aberration. 
Errors here are said to be "correction" errors, such as undercorrection or 
overcorrection. 

The terms A6ρ6... are usually small but can become important with unusual 
optical systems. You can see by the ellipsis that this expansion goes on 
forever, but each factor An is usually much smaller than the previous 
coefficient. We can regard the A6 coefficient as the last important term in this 
chapter. 

Spherical aberration can be expressed by a number of equally valid con-
ventions. Another way of referring to the fourth- and sixth-order wavefront 
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terms is to call them third- and fifth-order spherical aberration. These names 
are derived from the slope of the wavefront, not the wavefront itself. and how 
far the light is shifted sideways from the center of the diffraction spot. Some 
authors find it more convenient to consider the residual changes in focal 
distance with p, or "longitudinal aberration" (Kingslake 1978, p. 114). In this 
way of looking at errors, primary aberration is the coefficient of the ρ2 term. 
Thus, we can find the same primary spherical aberration expressed as fourth-, 
third-, or second-order coefficients, depending on whether the polynomial 
expansion refers to the wavefront, to the residual slope, or to the longitudinal 
aberration respectively. In this book, we will always refer to the wavefront. 

10.4     The Aberration Functions 

The aberrations are usually measured at the position of best focus² because 
the spurious disk is smallest there. It's what we think when we say "the 
telescope is focused." When A2 is zero, Eq. 10.2 has the position of focus 
arbitrarily set at what is called "paraxial" focus, or the focus of the center of the 
mirror or lens (the narrow end of the caustic horn above). Although a 
convenient place for the mathematics of wavefront shape, it has nothing to do 
with the location where we visually perceive the tightest disk. 

If we make the constant A4 non-zero, for example, we find that some 
defocus must be added to chase best focus as it scoots away. If we change A4 a 
second time, we must move the focus again. The term A6 creates even more 
complications. If we wish to consider pure higher-order spherical aberrations at 
the best focus position, we must subtract out just the right amounts of lower 
orders. Removing these terms can be tiresome although the process is 
computationally straightforward. 

It is much more convenient to encapsulate just enough of the lower-order 
aberrations to automatically cancel them out of each term as it is increased. 
This step was taken, in a considerably more complicated form, by Fritz 
Zernike, and the resultant terms are called orthogonal Zernike polynomials 
(Born and Wolf 1980). The interesting terms are limited here to 4th- and 6th-
order, but they exist for higher orders as well: 
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Fig. 10-3. Aberration of Zernike function W4(ρ), illustrating overcorrection at best  focus. 

 
Fig. 10-4. Aberration of Zernike function We(p), describing higher-order spherical aberration. 

the same size as in Eq. 10.2. These complicated-looking equations simplify 
somewhat when displayed as aberration functions (see Figs. 10-3 and 10-4). 
All focused patterns appearing below are referenced near the focus positions 
implied in these functions. 

The functional form of the fourth-order Zernike polynomial has just one 
doughnut-shaped ring, whereas the higher order has an elevated center. The 
8th-, 10th-, and higher-order polynomials add one extra curl each. In fact, as 
we go higher, the pattern appears increasingly corrugated. But remember, the 
sum of these polynomials represents smooth surfaces. The signs and 
amplitudes are chosen so that the washboard appearance goes away. Only for 
the zonal defects of Chapter 11 do anomalous contributions of high-order 
polynomials add up to give a non-zero result. 
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Although it is not plotted, the 6th-order function has a more involuted 
caustic shape. Imagine if a very powerful individual reached into the bell of the 
musical horn of Fig. 10-2 and pulled the mouthpiece halfway back through it. 
The resulting damage would look much like that caustic (Cagnet et al 1962). 

Another minor point is that the position of diffraction focus moves slightly 
if the telescope is obstructed. Most of the patterns appearing in this chapter take 
into account this change. The longitudinal slice patterns are an exception. 

10.5     Correction Error (Lower-Order Spherical Aberration) 

10.5.1     Filtering of Spherical Aberration 
The modulation transfer function (MTF) is depicted in Fig. 10-5. The 

drooping lines show the way contrast is reduced as spherical aberration is 
steadily worsened. One interesting feature is the mild increase that occurs for 
small aberrations near a spatial frequency 0.5 to 0.6 of maximum. This 
recovery corresponds to a frequency where the separation of the target bars is 
about the distance to the first diffraction ring. It sags on either side. 

 

Fig. 10-5. MTF characteristic of correction error. 

The MTF worsens significantly when the aperture pupil goes from 1/8 to 1/4 
wavelength of total aberration, emphasizing that optical quality begins to fail at 
around 1/4 wavelength of correction error. 
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Spherical aberration shifts light from the central disk to the outer parts of 
the diffraction pattern. A peculiar feature of spherical aberration is that it 
leaves the central core of the image alone (until the aberration is quite strong) 
other than to sap it of its intensity. Spherical aberration drains energy from the 
central Airy disk and feeds it to the rings. In Fig. 10-6, the encircled energy 
ratio of increasing low-order spherical aberration is shown plotted against 
reduced angle. Note the flat or near-flat appearance of the encircled energy 
ratio out to the radius of the Airy disk. This signature identifies spherical 
aberration of any order (even mild defocusing displays this peculiar behavior). 
Energy has been removed from the central disk of the aberrated pupil, but it 
holds the unaberrated shape fairly well until out beyond the first ring. Also in 
Fig. 10-6, the encircled energy ratio for 1/4 wavelength of spherical aberration 
intercepts zero radius at 0.8, just where the Strehl ratio says it should. 

 
Angle (Airy disk edge at 1.22) 

Fig. 10-6. Encircled energy of unobstructed apertures suffering from spherical aberration divided 
by the encircled energy of a perfect circular aperture. 

The effect of draining the energy in the core image is to maintain a more or less 
equivalent (but dimmer) Airy disk surrounded by a blurring that lessens with distance. 
Planetary detail suffers considerably, because low contrast dark markings are often 
very close to bright areas that bleed or wash over. The MTF chart indicates that the 
worst effects of correction error begin to occur for surface markings having 
separations of about 1/3 to ½ the resolution limit of the instrument. Thus, an aberrated 
telescope capable of resolving stars separated by 1 arcsecond shows planetary detail 
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(such as banding separated by less than about 2 or 3 arcseconds) with markedly 
reduced contrast. 

10.5.2     Star-Test Patterns of Correction Error 
When star testing, you may wish to view the image through a color filter to 

avoid color mixing effects. Because the maximum sensitivity of the human eye 
is around yellow or green, you probably can derive the most information from a 
filter centered on these colors. If you use an artificial source (such as a 
flashlight) some serendipitous filtering is caused by the lower color 
temperature of the filament. You may discover for yourself the helpful effects 
of filtration when star testing a telescope on Arcturus during a hazy night. The 
star is naturally yellow and so heavily colored by passage through the haze that 
it becomes orange. Few color filters cut out all of the lights of other bands, 
however. You shouldn't expect the monochromatic diffraction patterns 
calculated here to be precisely reproduced. 

Of course, you are welcome to try other filters, but be aware that as you go 
from blue to red the wavelength error lessens. Red filters may help subtract 
small amplitude trash from a diffraction-pattern image when you are trying to 
see broad deformations of the wavefront. 

The behavior of the in-focus image is depicted in Fig. 10-7, where spherical 
aberration runs from 0 to 1.7 wavelengths. All correction errors are different 
from the perfect aperture, but the first ring brightens badly for aberrations 
greater than 1/4 wave. Since the use of a secondary is so common, a similar 
comparison is made for a 33% obstructed aperture in Fig. 10-8. 

Out-of-focus behavior appears in Figs. 10-9 and 10-10 with each successive 
pair having slightly worse undercorrection. Each of these patterns is calculated 
for 10 wavelengths defocusing aberration. The severe 1.7 wavelength case is 
calculated for overcorrection (note the reversed appearance of the patterns). 
Here the strong outer ring appears outside of focus. We are viewing slices of 
the horn-shaped caustic in these figures. On one side of focus, the horn is sliced 
near the flaring bell. As a consequence, most of the energy is confined to a thin 
outer ring. On the other side of focus, the horn is sliced near the mouthpiece, so 
much of the energy is concentrated near the center. Still, a lot of energy spills 
out into the surrounding area to make the disk appear blurred. 

Again, the out-of-focus behavior is depicted for a 33% obstruction in Figs. 
10-11 and 10-12. The 1.7-wavelength error doesn't precisely reproduce the 
pattern expected of the Hubble Space Telescope before the repair mission, but 
this behavior is a good approximation. 

With lesser amounts of spherical aberration, you need to defocus less to 
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show the patterns well. Figure 10-13 shows the appearance when defocusing 
aberration is only 5 wavelengths. 

10.5.3    Estimation of the Severity of the Problem 
Correction error creates a marked contrast between the inside-focus and 

outside-focus star-test patterns. An experienced observer under excellent 
conditions can certainly detect errors smaller than 1/10 wavelength and pos-
sibly 1/20 wavelength (Welford 1960). Ironically, the star test for spherical 
aberration is almost too sensitive. It is so revealing that nearly any telescope 
fails casual inspection. 

A high-resolution light detection system would allow measurements over 
the expanded stellar disk and determination of exactly how the aberration 
affects the telescope. Because the eye is a terrible radiometer, it cannot be 
trusted to measure brightness. People who use the eye to determine the 
magnitude of variable stars are only successful if they follow a careful pro-
cedure using similar comparison stars. Estimating brightness of extended 
objects (like defocused star disks) is hopeless. Meticulously calibrated light 
sensors have been used to perform this job, but such a solution requires precise 
knowledge of the defocus distance. It is not practical for those wishing to do a 
fast test. (For an example of these difficult measurements, see Burch 1985.) 

A method must be developed that uses the strengths of vision instead of its 
weaknesses, some sort of tool that does not rely on the eye's absolute ability to 
determine brightness. A hint of the method appears in The Amateur's 
Telescope, by Rev. William F.A. Ellison, which was reprinted in Amateur 
Telescope Making Book One: (Ingalls 1976) 

It is easy enough to see, by the out-of-focus images of a star, what 
is the state of correction of the mirror. A truly corrected mirror, out-
of-focus, will give an expanded disk, uniformly illuminated except 
for faint traces of diffraction rings, having a clean, sharply defined 
edge, and a round black spot in the center. This black spot is the 
shadow of the fiat, and it should be the same size at equal distances 
inside and outside focus. If it is larger inside focus, the mirror is 
under-corrected. If it is larger outside, it is over-corrected. And 
many a time on a night when temperature was variable, the writer 
has watched a mirror change through all these phases within not 
very many minutes, the changes of the black spot answering 
faithfully to those of the thermometer... [italics in original]. 
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Fig. 10-7. Focused patterns for 0, 1/8, 1/4, 1/3, 1/2,  and 1.7 wavelengths of lower-order spherical 
aberration. The aperture is unobstructed. 
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Fig. 10-8. In-focus patterns for a) 0, b) 1/8, c) 1/4, d) 1/3, e) 1/2, and f) 1.7 wavelengths of lower-
order spherical aberration. Aperture has a 33% centered circular obstruction. 
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Fig. 10-9. Undercorrected apertures inside focus (left) and outside focus (right). Defocusing 
aberration ±10 wavelengths, a) 0, b) 1/8, c) 1/4,  wavelength lower-order spherical aberration. 
Aperture is unobstructed. 
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Fig. 10-10. Apertures displaying severe spherical aberration inside focus (left) and outside focus 
(right). Defocusing aberration ±10 wavelengths, a) 1/3, wavelength undercorrected, b) 1/2 
wavelength undercorrected, c) 1.7 wavelengths overcorrected. Aperture is unobstructed. 
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Fig. 10-11. Undercorrected apertures inside (left) and outside focus (right). Defocusing aberration 
±10 wavelengths, a) 0, b) 1/8, c) 1/4 wavelength lower-order spherical aberration. Aperture is 33% 
obstructed. 
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Fig. 10-12. Severe spherical aberration inside (left) and outside focus (right). Defocusing 
aberration is ±10 wavelengths, a) 1/3 wavelength under corrected, b) 1/2 wavelength under 
corrected, c) 1.7 wavelengths over corrected. Aperture is 33% obstructed. 
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Fig. 10-13: Under corrected apertures inside (left) and outside focus (right). De-focusing 
aberrations ±5 wavelengths, a) 1/8, b) 1/4, and c) 1/2 wavelength under-corrected. The aperture is 
unobstructed. 
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As it turned out, these comments were imbedded in an argument that seemed 
critical of star testing. Perhaps many of Ellison's readers were confused by this 
discussion into thinking that the star test was inadequate. Ellison's point, 
however, was valid. The plate glass mirrors common at that time were 
untestable in an environment that was rapidly varying in temperature. Any test 
would have failed in this situation. 

Modern materials used in mirror substrates are much less prone to deform 
with temperature changes. As long as the telescope is close to ambient 
temperature, the optics are reasonably well-behaved. The test is reliable for 
slowly changing exterior temperatures. 

In any case, the shadow spot gives testers a way to estimate the aberration. 
Figure 10-14a shows a longitudinal slice through a perfect aperture's focus 
point. The objective lens or mirror is to the left, the outside-focus direction is 
to the right (for an explanation of labeling, see Appendix D). Except for the 
spot activity along the axis, looking like beads on a string, the out-of-focus 
profile is almost smooth and uninteresting. In 10-14b, we are looking at the 
same situation with a 33% obstruction. The aperture is otherwise perfect, and 
this situation is symmetric. 

In dark cones emerging from the center, the shadow of the diagonal seems 
to break out of the defocused image at a finite distance close to either side of 
focus. Since the image is quite small, the bright spot at the center delays the 
appearance of the central obstruction until the defocusing aberration is close to 
2 wavelengths on either side. (See Chapter 5 for the conversion of defocusing 
aberration to focuser motion.) The eyepiece must be moved a little more until 
the spot is clearly defined. Nevertheless, notice that the breakout points for a 
perfect mirror are balanced; they are the same distance on either side of focus. 

What happens when we add some undercorrection to the obstructed 
aperture? The answer is shown by Fig. 10-15. 

The first point of interest is that the best focus point slides a little forward 
with progressively worse undercorrection. The aberration was entered as a 
Zernike polynomial, but those functions have a slight focus shift for 
obstructed apertures. 

The next peculiarity is the small size of the disk inside focus compared with 
that of the outside. This condition is caused partly by the obstruction focus 
shift, but it is noticeable in Fig. 10-12 above, which has been corrected for 
this shift. No unique focal point exists for the aberrated wavefront. Ap-
proaching focus, the wavefront must buckle and change shape, manifesting 
itself in these different sizes. 

Energy conservation also plays a role. In the longitudinal slice figures, a 
vertical line cannot be drawn that doesn't intercept an illuminated region. The 
intensity is never allowed to turn itself off everywhere in a sliced plane. 
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a) perfect unobstructed slice pattern 32

b) SA = 0 obstruction = 33%

-8                                                                             8 
Fig. 10-14. A longitudinal slice through the focus of a) a circular unobstructed aperture, b) a 33% 
obstructed aperture. Neither pattern has any aberration associated with it. The slice is taken from 
defocusing aberration of —8 wavelengths to +8 wavelengths. The corner angle of 32λf/D 
corresponds to the ray-tracing edge of geometric shadow ±8 wavelengths defocusing. Thus, the 
picture has been squeezed until it resembles the cone of an f/1 system. 

In fact, if we very carefully keep track of the total energy at any value of defocus, we 
discover it to be the same as the total energy that passed through the aperture. The gnarls 
and knots are just an arrangement. An appearance of a bright ring is counterbalanced by 
a dark ring showing up elsewhere in the sliced plane. 

The dark cones of the secondary shadow are no longer at equal offsets in the 
presence of correction error. This is made clearer in the stick-figured drawing of Fig. 10-
16. In the 1/4-wavelength diagram, the central obstruction does not show itself until it is 
about twice as far from best focus. 

Two effects are conspiring to offset the secondary-shadow breakout point.  One is 
the clustering of energy around the rim of the horn-shaped 
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-8  
Fig. 10-15: 33% obstructed apertures show the differing distances of the emergence of the 
secondary shadow from the center of the diffraction disk. Correction error is a) -1/8 wavelength, 
b)- 1/4 wavelength, and c) -1/4 wavelength (all undercorrected). 
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a)SA = -1/8 wavelength

b)SA = -1/4 wavelength

c)SA = -1/2 wavelength

Fig. 10-16. Diagrams sketching overall behavior of Fig. 10-15. The distance of reappearance for the 
secondary shadow is significantly different if correction error exceeds 1/4 wavelength. 

caustic on one side of focus. This fierce excavation of energy from the center 
allows the secondary shadow to burst forth more quickly. The other effect is 
the pile-up of energy toward the mouthpiece of the horn on the other side of 
focus. This intensity fills in the secondary shadow and retards its reappearance. 
Not until the eyepiece has been moved well past the caustic region is the 
secondary shadow allowed to poke free. 

A criterion can be defined for low-order spherical aberration. We will 
demand that the ratio of the breakout distances be no more than 2:1 or 3:1. Of 
course, the evaluation must be performed on a 33% obstructed aperture. This 
test is different than the one described by Ellison. He defocused equal distances 
and compared the size of the shadows. Here, we will estimate the relative 
distances on either side of focus that the shadow firmly shows itself. 

Such a criterion would be exceedingly weak if it were based only on a 
single theoretical plot. It comes from long experience with star-testing tele-
scopes for which other tests had also been performed. This tolerance is not 
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absolute by any means. The reappearance of the shadow can depend on the 
brightness of the star, the seeing, and the admixture of other aberrations. The 
tester must take into account the general performance behavior of the telescope 
before rejecting it for failure of the "2:1 test" alone. Nevertheless, I have seen 
no mirror having 1/4-wavelength correction error (as determined by the zonal 
Foucault test) give a lower ratio. 

10.6    Testing for Correction 

This 2:1 ratio test is useful for other telescopes besides reflectors. The 
telescope should be obstructed even it has no natural secondary. Refractors can 
be artificially obstructed by centering a piece of paper over the telescope 
opening. 

Reading the offset, however, is by no means a well-controlled process. If the 
obstruction is 25%, the cutoff drifts up to about 3:1. Since most Newtonian 
reflectors have obstructions of less than 33%, this test can be standardized by 
making a larger mask to attach to the back of the spider. Of course, the native 
obstruction of most Schmidt-Cassegrains is very close to 33% already. 

Also, finding the breakout points of obstruction shadow is a much more 
straightforward process on medium to high focal-ratio telescopes. It is much 
easier to read on telescopes with focal ratios above f/8. The difficulty of 
making this estimate on faster instruments is exacerbated by rack and pinion 
focusers and the tiny depth of focus. 

This procedure seems to work well in white light, because having a mul-
tiplicity of colors tends to wash out the minima in surrounding diffraction 
rings, or at least make them less distinctive. The secondary appears in all 
colors, but details in the disk depend on the color. Unless you're testing a 
refractor, try removing the color filter to check for spot size. 

The source should not be too bright. Since you're inspecting the image close 
to focus, examining a bright star could overpower the eye and make seeing 
details difficult at the center of the image. If you are doing the test with an 
artificial source, you may want to put the illuminator at a greater distance, use 
a smaller reflector, or use a neutral-density eyepiece filter. If the telescope 
seems to have an unusually high offset, try again with a dimmer star. 

The behavior of one color is shown in Fig. 10-17. The diagrams go from 
slightly inside focus at top left to somewhat farther outside focus at lower 
right. Keep in mind that this diagram is reproduced here at too great a 
magnification. If you have difficulty seeing where the shadow permanently 
and strongly reappears in Fig. 10-17, place the page at some distance. You'll 
find that the shadow isn't really apparent until well beyond focus. 
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The shadow appears to have equivalent central depressions at about -1.5 and 
3.75 defocusing aberration. 

3.75 compared to 1.5 seems to be a bit more than the estimate of 2:1. but 
recall that this transition point is a rough one. Many compromises have been 
made in generating these image patterns on paper. The most important 
approximation is that the figures are not self-luminous. Absolute image 
brightness and contrast have also been allowed to slide so that they could be 
printed on a medium with limited dynamic range. 

An additional effect of defocused spherical aberration is demonstrated in 
Fig. 10-17. As you defocus toward the bell of the caustic (inside focus for 
undercorrection), the shadow breaks out abruptly and cleanly. On the other 
side, the shadow first appears as a soft central depression or a navel. The 
secondary shadow uncurls or blooms as it appears. The point of undoubted 
appearance is less crisp but is still appreciably different than the other side. 
Because of this uncertainty, the method is not suggested as a measurement 
technique. It is only a way of detecting unusual amounts of correction error 
which could cripple your telescope. The point at which you should become 
concerned about the correction of your telescope is when the ratio exceeds 3:1, 
but you cannot use this ratio method to measure spherical aberration precisely. 

If an otherwise good telescope is failing this test, you could have an 
interfering aberration of a different type. If you suspect that the location of the 
shadow breakout is giving you the wrong answer, shift to a fixed-distance 
pattern comparison (as in Fig. 10-13) by looking up the value of the defocus in 
Table 5-1. Be careful of Ellison's warning. Let the optics cool down 
completely. Pyrex is a better material than plate glass, but its shape is not 
completely independent of temperature change. 

10.7     Higher-Order Spherical Aberration 

Sometimes the A'6 coefficient is neglected or uncorrected. In most tele-
scopes, this aberration makes little difference, but it can be a problem for some 
unusual instruments. 

For example, the shape of a Schmidt corrector plate is similar to the fourth-
order curve in Eq. 10.3 with a different amount of ρ2 cleverly chosen to 
minimize potential chromatic aberration. The fast spherical primary produces 
an aberration function with many terms in the expansion in Eq. 10.2, but the 
corrector plate is capable of easily correcting these terms out only to fourth 
order. A small value of sixth-order aberration may remain uncorrected. Various 
lens designs can also add trifling amounts of "secondary" spherical aberration 
of sixth order on the wavefront (Kingslake 
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Fig. 10-17. Defocused stellar images of a 33% obstructed aperture having ¼ wavelength under correct 
ion. Each frame is magnified so that the perfect geometric profile is the same size as the labeled frame. 
Thus, the edge is at 10 units of angle for 2 wavelengths of defocusing, 20 units for 4 wavelengths, etc. 
The bottom of each box is marked with the defocusing aberration in wavelengths. 
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1978, p. 114). 
Higher-order spherical aberration can be safely neglected in most in-

struments. Nevertheless, in certain ultra-fast catadioptrics or complicated 
refractor designs, you should not be surprised to see small amounts of the 
aberration described in the next section. 

10.7.1 Star-Test Patterns of Higher-Order Spherical Aberration 
An A'6 coefficient in Eq. 10.3 yields the patterns of Fig. 10-18. Like a 

fourth-order correction error, an A'6 with the opposite sign results in these 
patterns being reversed in focus direction. 

The error looks worse in the star test than it behaves in the image. To 
reduce the Strehl ratio to the same 0.8 value that it possesses for 1/4 wavelength 
of lower-order spherical aberration, A'6 would have to be increased to about 0.4 
wavelength. 

The description of the higher-order caustic as a horn pulled back halfway 
through itself helps explain these complicated patterns. The correction error 
star-test patterns that appeared earlier in the chapter went from a bright outer 
ring on one side of focus to a fuzzy bright core on the other side. Here the 
fuzzy bright core appears on the same side of focus as a hole in the center (Fig. 
10-18, —3 wavelengths defocused). 

For that reason, high-order spherical aberration might be called the "ring 
aberration." It bears more than a passing resemblance to the zonal defects 
appearing in Chapter 11. Indeed, this aberration can be viewed as the broadest 
of the zonal aberrations. 

Of course, higher-order spherical aberration is rarely seen in clearly iden-
tifiable form. As a residual aberration in a normal telescope, its amplitude is 
very low. This aberration is usually swamped by other effects. I have seen a 
slight amount only in one Schmidt-Cassegrain, where a dark secondary shadow 
was coupled with diminishing brightness toward the edge of the out-of-focus 
diffraction disk. The other side of focus revealed the opposite behavior, with a 
light secondary shadow and a strong outer ring showing simultaneously. The 
only reason I was capable of unambiguously seeing this small aberration was 
the almost complete absence of simple correction error in an exceptionally 
good instrument. 

10.7.2 Filtering of Higher-Order Spherical Aberration 
The filter graph for higher-order spherical aberration appears in Fig. 10-19. 

Clearly, 1/4 wavelength of aberration does not seriously affect the optics. Not 
until the aberration has been increased to 0.4 wavelengths does the damage 
become considerable.   The worst part of the decrease occurs at 
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Fig. 10-18. Star-test patterns for 1/5 wavelength of higher-order spherical aberration at best focus. 
Obstruction is 33%. 
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Fig. 10-19. MTF curves caused by 0.25 and 0.4 wavelength of higher-order spherical aberration. 

a lower spatial frequency than it did in Fig. 10-5 for low-order spherical 
aberration. In this case the fall occurs at about 20% of the maximum spatial 
frequency instead of 35%. Recalling that the maximum resolution of a 200-mm 
aperture is about 0.6 cycles/arcsecond, this aberrated system transfers surface 
details separated by less than 3 arcseconds with reduced contrast. 

When the "elbow" of the MTF curve appears farther to the left, it is a sign 
of a more corrugated appearance of the aberration function. The surface error 
becomes more localized. As the optical error becomes smaller and goes through 
more wiggles, the corresponding MTF exhibits a sharper decline at lower 
spatial frequencies. As the optical errors become more localized, the MTFs at 
higher spatial frequencies are also reduced but don't oscillate much. The 
damage is already done at lower spatial frequencies. However, it should be 
emphasized that pure higher-order spherical aberration of this magnitude is 
unlikely to trouble ordinary instruments. If the optics are fabricated poorly, the 
bulk of the aberration is usually expressed in simple fourth-order correction 
error. 

10.8     A Compact, Uniform Standard for Optical Quality 

Consumer telescope makers and observers alike tend to divide aberration 
and obstruction into separate compartments, treating the two as incomparable 
phenomena. However, a single standard can easily be defined 
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to cover them both. It is based on the encircled energy ratio (or EER(θ)). The 
encircled energy ratio gives a way of comparing these two degradations on an 
equal footing. 
Here's the way such ratios are calculated: First, we find what fraction of the 
energy from a point source is focused by the imperfect telescope on a tiny circle 
of specified angular radius at the focal plane. This number is then divided by 
the same fraction for a perfect, unblocked aperture of the same diameter. For 
example, a moderately obstructed telescope that also has a trifling amount of 
spherical aberration encircles 72% of its energy at a certain angle and a perfect 
aperture encloses 84% at the same angular radius. The encircled energy ratio 
would then be 72/84 = 0.86 at that angle.  

Please note that all these ratios go to unity as radius goes to infinity. They 
are corrected for any simple dimming of the aperture by a secondary mirror or 
apodization. The degradation of the image caused by diffraction is more 
pertinent than a simple transmission loss (remember the extinction paradox of 
van de Hulst). About half of the lessening of the central intensity is caused by 
simple dimming (light that hits the rear of the secondary), and half is caused by 
the damaging effects of diffraction. Punishing a telescope for an effect that does 
not increase the point spreading is unfair, so it is normalized out. Besides, if we 
are going to talk of the absolute transmission, we also must know details of the 
coatings and internal reflections. These are unknown in the general case, so 
accounting for dimming caused by the secondary is an incomplete treatment. 

The encircled energy ratios appearing in Figs. 9-1 and 10-6 are complete 
curves. For a single number that represents a quality criterion, one needs to 
take the EER(θ) value at a specific value of θ. The question arises: what angle 
is best? 

Unfortunately, no one angle is the last word on optical quality. We could 
choose an angle (or circle) very near the center of the image, or EER(θ→0). 
This number is close to the normalized brightness ratio at the center of the 
diffraction disk. In fact, it is identical with the Strehl ratio in unobstructed 
apertures. EER taken near the center of the image, however, seems excessively 
tolerant of obstruction, as Fig. 9-1 demonstrates. EER(θ→0) does not dip 
below 0.8—the cutoff point of good optical quality in the Strehl ratio—until 
obstruction is above 45%. One could also define the quality factor as EER 
within a circle of radius θ = 1.22λ/D (Eq. 1.1), or the edge of the Airy 
diffraction disk. Fig. 9-1 shows that the values of EER(1.22) sag considerably, 
and have even started to rise again. 

Somewhat arbitrarily, this book will use an angular radius of θ — λ/D, or 
the angular spacing where the MTF always goes to zero. This angle has the 
practical advantage of catching obstructed apertures at their low points in Fig. 
9-1 and has the philosophical advantage of always being related to 
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the maximum spatial frequency of the MTF chart. This ratio will be called 
EER(l). In Fig. D-2, you can see the edge of the frame is at an angle of 1.22λ/D. 
Thus a circle drawn here would be sitting in the darkness between the rings. The 
integrated area of EER(l) is slightly inside the bright edge of the disk. 

EER(l) of apertures mixing the two optical problems of obstruction and 
lower-order (Zernike) spherical aberration have been collected together in Table 
10-1. We see a very similar behavior to the Strehl ratio in the unobstructed top 
row. A quarter wavelength of spherical aberration still results in a degradation 
of EER(l) to 0.8. It is the second axis that is most interesting, however. It is 
possible to compare the loss of encircled energy ratio of obstructed, but 
otherwise perfect apertures. EER(l) = 0.8 for obstructions slightly less than 33% 
of the full diameter. 

Notice that obstruction does not always diminish quality. The case of ½-
wavelength correction error shows a curious inversion, with increasing 
obstruction serving to cover up the poor figuring. 

Table 10-1 
EER(l) for apertures with 

lower-order spherical aberration. 
Wavefront is refocused. 

Obstruction is fraction of diameter covered. 
Peak-to-valley correction er or r

on unobstructed aperture  
0 1/8λ 1/6λ 1/5λ 1/4λ 1/3λ 1/2λ

Obstruction
0.00 1.00 0.95 0.91 0.87 0.80 0.67 0.39
0.15 0.95 0.91 0.87 0.84 0.78 0.66 0.41
0.20 0.92 0.88 0.84 0.81 0.76 0.65 0.42
0.25 0.88 0.84 0.81 0.78 0.74 0.64 0.43
0.30 0.82 0.79 0.77 0.75 0.71 0.63 0.44
0.33 0.79 0.76 0.74 0.72 0.69 0.61 0.44
0.40 0.71 0.69 0.68 0.66 0.63 0.58 0.45
0.50 0.58 0.57 0.56 0.56 0.54 0.51 0.44

My personal experience with a large number of telescopes having various 
amounts of correction error suggests the following empirical ratings. These 
cutoffs are necessarily hazy, and the "good" point is deliberately chosen to 
match the Strehl ratio (i.e., 0.8), where optics are conventionally called 
"diffraction-limited." 

1. 0.88 1.00 excellent to perfect 
2. 0.80-0.88 good to excellent 
3. 0.70-0.80 poor to good 

The only acceptable instruments with EER(l) below 0.70 arc special-
purpose telescopes, such as astrocameras or richest-field telescopes.   No 
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instrument having 1/3 wavelength of correction error, even if unobstructed, 
reaches up to this minimum standard. No aperture with an obstruction slightly 
larger than 40%, even if figured perfectly, ever meets it. 

10.9    Tolerable Errors 

All telescopes are made with some spherical aberration. The perfect 
Newtonian paraboloid, for example, is an unattainable goal between an infinite 
number of prolate spheroids and hyperboloids. The question is whether the 
telescope suffers under the load. Once EER(l) is over 0.88 or so, spherical 
aberration is gratifyingly small and the optics could justifiably be called 
"perfect." 

We saw in Chapter 3 how modulation transfer functions stacked indi-
vidually. Most obstructed telescopes are teetering on the brink already. It takes 
very little to push them over. By such logic, we should be intolerant of any 
correction error, but that attitude is unrealistic. 

Commercial telescope optics have always been corrected to a tolerance of 
about 1/4 wavelength. The way that accuracy is stated has changed, but 
commercial telescope makers still fabricate the same 1/4-wavelength optics 
they always did. 

Let's recognize a simple fact. Making objectives to higher accuracy than 1/4- 
wavelength is expensive. The scaling of price with quality is similar to the 
scaling of price with diameter. Incremental improvements in surface accuracy 
cost much more because we are paying not for glass but for an optician's 
valuable time. For better or worse (usually worse), buyers use price as a strong 
deciding factor. 

Is more accuracy really needed? In informal tests, a telescope with a 1/4-
wavelength correction error has been found difficult to distinguish from a very 
good telescope unless seeing is excellent and the observer is skillful (Ceravolo 
et dl. 1992; also see Chapter 15). For most people who observe under average 
skies, a 1/4-wavelength correction error represents an acceptable compromise 
between quality and the price of optics. 

In the previous section, we defined those apertures with encircled energy 
ratios greater than 0.88 as excellent. We see this designation only applies to the 
upper left corner of Table 10-1, i.e., to obstructions less than about 25% or 
correction errors less than 1/5 wavelength. Notice that a 25% obstructed 
aperture with only 1/6 wavelength of correction error is still "good" at 0.81, but 
that a 15% obstructed aperture with a 1/4-wavelength error is below the cutoff 
at 0.78. The lesson is clear. Accurate figuring allows the telescope to get away 
with other difficulties. 

Personally, I find the images of optics that are nudged against the Rayleigh 
limit a bit too soft. However, of the telescopes I've tested, most of 
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them that obviously didn't perform well on the sky have been much worse than 
Rayleigh's limit. A quarter wavelength of correction error is barely acceptable if 
it is the only significant problem. With a reasonable 25% obstruction, such an 
aperture has EER(l) = 0.74, and has a transfer function better than a perfect, 
unobstructed aperture 1/2 to 1/3 of its size. Even with optical problems of this 
magnitude, a 6-inch f/8 reflector is at least as good as a perfect 3 to 4-inch 
apochromatic refractor. At some spatial frequencies, it is better. 



Chapter 11 

Circular Zones and Turned Edges 

This chapter discusses zonal defects and a common type of zonal error, a 
turned edge. It will make four chief points: 

1. On mirrors of amateur size, interior zones are seldom large enough to 
be troublesome. 

2. Zonal defects can be detected by defocusing a larger amount than is 
usual. 

3. Turned edge is a persistent problem that yields contrasts worse than 
the smaller aperture inside the turned annulus. 

4. Narrow turned edges can be treated by masking or painting the edge. 

11.1    Causes of Zonal Defects 

Zones are slight circular corrugations in the polished surface of the glass. 
The improper use of fast polishing materials may lead to zones in optical 
elements. For example, the lap is typically pressed against the optical piece to 
achieve uniformity of polishing action. If too little pressing is done, or if part 
of the lap overhangs during pressing, sections of the polisher can ride the 
optical piece with more pressure than the rest. Because the lap and the stroke 
direction rotate with respect to the mirror, this uneven pressure digs a trench 
around a certain radius of the mirror. Many other mechanisms can also result 
in zonal defects. When too short a stroke is used, good statistical averaging of 
the two surfaces doesn't take place. Channeling a lap with a centered pattern 
will often result in a profusion of thin rings. If a piece of the brittle pitch 
breaks off and is trapped beneath the rest of the lap, it will plow a furrow in 
the mirror during the next few minutes until the piece is forced back into the 
lap. 

201 
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However, these causes are minor compared to the chief reason for zones. 
Fast aspherical mirrors demand the use of smaller polishers. The old style of 
optical work (common in the days of long-focus mirrors) involved the use of 
two identical disks. Telescope makers modified their stroke slightly for a few 
minutes, but still used an equal-diameter lap to achieve the aspherical figure. 
Unfortunately, that method won't work on mirrors of low focal ratio. The 
sphere is so different from the correct shape that the maker struggles for 
proper conformance. A lap of equal size won't ever reach the correct form. The 
natural tendency toward statistical averaging will keep dragging its curve back 
toward a sphere. Also, full-diameter laps are cumbersome when the optical 
piece is large, regardless of its focal ratio. 

The optician chooses a sub-diameter lap, usually one about half the size of 
the disk being worked (unless the optical piece is really huge—then it's even 
smaller). The aspherical shape can be approached merely by rubbing the 
center of the disk more than the outside. Using a smaller lap is dangerous 
though. The optician must enforce an artificial randomness on the polishing 
machine to prevent the unnatural precision of the mechanism from digging 
trenches at fixed radii and, by implication, leaving ridges at other radii. A 
partially worked surface must be blended or smoothed. 

Happily, interior zones on most commercial mirrors are detectable in 
sensitive bench tests, but they are usually so slight that they are unseen in the 
eyepiece. Most common is a small depression or nipple at the center, an error 
that is largely obscured by the secondary mirror. In leaving this error 
untreated, the optician is saving time and money by ignoring an error that will 
not be illuminated. (A central zone is shown in Fig. A-3.) 

Another common type of interior zone consists of one or more ghostly thin 
rings appearing about halfway out. They can usually be seen in the Foucault 
test when the surface figure is very near a sphere, but such an error is only 
cosmetic. The slight ringing is evidence that the blending is going well. 

On the other hand, if the maker is hurried and testing is inadequate, a 
severe zone may be left in the mirror. One form of interior zonal defect has 
two competing radii of curvature—one inside the zone, the other outside the 
zone. This condition may be more damaging to the image than light scattered 
from the vicinity of the zone itself. Light deflected from the immediate area of 
the zone will appear as diffuse glow if the zone is sharp enough, but these 
large areas of the mirror on either side of the zone are directing a great deal of 
light on interfering focal points. They cover sufficient area that light is 
attempting to come to two tight disks at different focal distances. 

The most debilitating form of a zone is turned edge. It can result from 
even a full-diameter lap.    It is caused by excessive wear at the edge of 
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the disk during polishing. If too much pressure is applied while the tool is 
teetering on the edge of the optical surface, or if the lap is not maintained in 
good conformance to the shape of the disk being worked, a turned edge can 
result (Texereau 1984). Turned edge also seems to be a problem associated 
with a rocking motion of the mirror disk during polishing. 

Turned-down edge, because it happens at the very periphery of the optical 
surface, is not limited in amplitude. Interior zones are temporary intruders. If 
good contact between the mirror and tool is maintained and the stroke is not too 
short, the averaging effects of many strokes at many different angles will 
eventually average the zone out. It will be automatically blended away. 

Turned edge, on the other hand, is derived from bad figuring habits or 
improper use of materials. Once it starts, the cause generally doesn't go away. It 
just keeps on occurring or even becomes worse. Turned edges are usually deep, 
and since the edge is on the perimeter of the optics, it covers a surprisingly 
large fraction of the aperture's surface area. A 5% turned-edge zone is struck by 
about 10% of the light incident on the aperture. 

 

Fig. 11-1. Turned edge is modeled by a 60th-order term of Eq. 11.1. 

Zonal aberration is connected to the expression for general spherical 
aberration. Remember, the equation for the wavefront involved terms like 

W(ρ) = constant + focus term + A4ρ4 + A6ρ6 + A8ρ8 + A10ρ10 + …  (11.1) 



204 Chapter 11.   Circular Zones and Turned Edges 

Normally, for global figuring errors, the coefficient of ρ4 is largest, with a 
smaller coefficient of ρ6. All of the remaining terms are much smaller. But a 
zone is a special case where one or more of the higher order terms contributes. 
A zone is like a switch that turns on very high-order spherical aberration, 
suddenly waking up errors that were best left asleep. 

A simple example is graphed in Fig. 11-1. Turned edge is modeled as a 
term — A60ρ60. There is nothing special about the 60th order. Similar results 
would have been derived from 58th order or 62nd order. 

Interior zones are more complicated. They are combinations of many high-
order terms. Broad zones are described by lower orders than sharp zones. 

11.2     Interior Zones 

Something should be emphasized at the beginning to avoid frightening the 
reader. Interior zonal defects on amateur-sized optics are rarely more than 
cosmetic defects. Although they are common during brief periods of 
fabrication, reasonably careful work is enough to lessen them. Few opticians 
would release a small mirror with a significant interior zone on it. Large 
mirrors, however, are typically figured face-up with polishers much smaller 
than their diameters. Such optics often show persistent zones. These mirrors 
require more careful evaluation to determine if their zonal defects are 
negligible. 

Two types of interior zones are considered here. The first is a narrow trench 
where the deformation is isolated or does not persist over the rest of the 
surface. Huge observatory optics often suffer from this type of zone, because 
the surface is worked by very small polishers. Usually, opticians working on 
large optics are no fools and will not let conditions that generate these zones 
endure for long. Still, the skeletal remains of zonal grooves will sometimes 
appear on test photographs from big mirrors. 

The star-test pattern in Chapter 2 was calculated from such a 1/4 wavelength 
trench zone. It was modeled as a narrow Gaussian-function dip in an otherwise 
flat mirror. The particular extrafocal patterns shown in Fig. 2-9 had defocusing 
aberrations of 20 wavelengths. A general feature of the star test for zones is that 
one must rack farther out of focus to see the effect of zones well. 

A zone produced commonly in the fabrication of small mirrors has a profile 
that looks like an "S" or "Z," and is called an "S-zone" here. The zone remains 
after global figuring errors below sixth order are subtracted from the wave 
front. This zone can have different radii on either side of its sharpest slope. 
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11.2.1    Aberration Function of S-Zones 
Zones can be described by linear combinations of many spherical aberration 

terms, but that method is somewhat cumbersome. Instead, the zone is specified 
here with three parameters: amplitude, width, and radius. The optical surface is 
then divided into three regions, and the surface is constructed by fitting cubic 
polynomials through the points defined by those three parameters. At the 
border of each region, the slope of the wavefront is set to zero. Figure 11-2 
shows a narrow zone at a 40% radius. A cupped plateau is inside the zone and a 
shallow dish surrounds it. Less evident is the slightly different curvature of 
those areas. 

 
Fig. 11-2. A sharp S-zone at a radius of 40% of the aperture. It divides up the surface into two 
broad areas with different radius of curvature, as well as providing a rapidly inclined scattering 
ridge. 

11.2.2    Filtering of S-Zones 
Interior zones have two characteristic scales. Light diffracted from the 

vicinity of the zone itself is scattered into a broad fuzzy halo, so one an-
ticipates that the modulation transfer function should dip rapidly at low spatial 
frequencies. When such zones have a large diameter, more or less like a big 
central obstruction, the MTF oscillates similarly at higher spatial frequencies. 

The behavior of the MTF matches both predictions in Fig. 11-3 for two 
radii and two amplitudes. One radius is just the 40% zone described in the last 
section. The other is the same zonal defect moved out until it is centered on 
70% of the radius. Both zones are plotted with total aberrations of 1/8 and 1/4 
wavelength, and both zones have width equal to 0.1 aperture radii. The 1/4-
wavelength zones yield a slightly better Strehl intensity ratio than the 0.8 
value that marks the Rayleigh 1/4-wavelength limit 



 

Fraction of maximum spatial frequency 

Filtration associated with S-zones 
at different radii 
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Fig. 11-3. Modulation transfer functions for a single zone. The MTF curves are for two values of 
zonal aberration (1/4 wavelength and 1/8 wavelength) and two zonal radii (0.7 and 0.4 of the full 
aperture). The aperture is unobstructed. 

for spherical aberration. The 1/8-wavelength amplitude zones are well inside of 
the 0.8 Strehl ratio tolerance. 

The slight wiggles of the zonal defect MTF at high spatial frequency don't 
concern the tester much. More troublesome is the brisk drop at low spatial 
frequency. It is this degradation that Danjon and Couder were talking about 
when they made the distinctions between the slope of the defect and its 
amplitude (mentioned in Chapter 1). A smooth surface is the difference 
between merely adequate optics and those rare instruments that take the 
observer's breath away. 

Notice another characteristic of these plots. A zone appearing at 70% of the 
aperture is much worse than an equal-depth zone appearing closer to the center. 
At low spatial frequencies, the contrast drops more precipitously for the larger-
radius zone. Lowered performance in this case is purely a function of how 
much area the defect covers. 

Of course, interior zonal defects are not well described by peak-to-valley 
wavefront error. The RMS deviation is a much better way of characterizing 
zones. Zones are unacceptable when their RMS deviation is 1/14 wavelength, 
which corresponds roughly to the 1/4 wavelength curve of Fig. 11-3 at a radius 
of 0.7. This deviation is much worse than any self-respecting optician would 
tolerate. For deviations half that size, the MTF only shows a slight dip. This 
amount of aberration is acceptable. 
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11.2.3    Detecting Interior Zones in the Star Test 
In his 1891 work on star testing, Taylor gave a brief description of how he 

detected a zone in a refractor: 
In order to detect such zonal aberration, which is caused by 
imperfect figuring of one or more of the surfaces, it is best to direct 
the telescope to a very bright star, using a moderately high power, 
and rack in and out of focus as before, only it is best to rack out 
until 8 to 20 interference rings can be counted, for the irregular 
zonal effect is most easily detected under such conditions.... 
Counting from the edge inwards, it may be noticed, for instance, 
that the outer ring is poor and weak, while the next one or two 
appear disproportionately strong, the next two or three weak, while 
those about the center are strong again... (Taylor 1983). 

Even though Taylor was writing about refractors and referring to smoother 
deformations that those modeled here, he described the two essential 
techniques to detect zones. First, bright stars are used to test for zonal defects. 
Second, the telescope is defocused farther than is recommended to detect other 
types of aberration. Defocusing long distances is especially handy because it 
lessens the effect of other aberrations almost to the vanishing point. Also, 
because light near focus is hopelessly muddled together, the zone doesn't tend 
to isolate itself from the rest of the diffraction structure. 

Star-test patterns for unobstructed optics with an S-zone at 40% the radius of 
the aperture and 1/8-wavelength total aberration on the wavefront are shown in 
Fig. 11-4 (corresponding to one curve of the MTF chart in Fig. 11-3). The 
defocusing aberrations are 10 and 20 wavelengths, whereas most of other 
aberrations appearing in this book are all depicted inside of 8 or 10 
wavelengths. The telescope is a long way out of focus, but still this zone is 
easily visible. 

The zone is most distinct at ±20 wavelengths, where it appears near its 
proper radius, but it has some anomalous features even here. It dips before it 
crests. In fact, the zone seems to be located at the crossover point between the 
extra bright ring and the depressed ring, presumably because it is an S-zone. 
Trench or hill zones are located at the correct radius but are bracketed by 
opposite-brightness rings. A dark area is always associated with a bright one 
because energy must be conserved. Energy that makes one ring look brighter 
always must be scooped from a nearby ring. 

The patterns at ±10 wavelengths defocusing aberration show another 
interesting zonal property noticed by Taylor—the pattern at 10 wavelengths 
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Fig. 11-4. Star-test patterns for an S-zone at 40% radius with amplitude of 1/8 wavelength. The perfect 
patterns are in the column on the right. The aperture is unobstructed. 

seems to be the complement of the —10 wavelengths pattern. The reversal is 
not perfect, only approximate. In portions of the disk far from the edge and 
close to the radius of the zone, the pattern seems to be a negative of the pattern 
on the other side of focus. 

The in-focus pattern indicates that such a zone will frighten a tester more 
than it will disturb an image. The Strehl ratio is reduced only to about 0.95, 
well within the tolerance for excellent optics. 

Another pattern appears in Fig. 11-5. This time the zone has been moved to 
a radius of 0.7 of the full aperture and the aperture is obstructed by 20%.   Here 
we see really complicated behavior.   The localized effects 
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of the aberration have not yet unmixed from the image at 20 wavelengths defocus. 
This fact teaches something important about identifying zones. Zones are easy to 
detect, but their radius and number is hard to pin down. The most we can say, 
unless very clean separation is seen, is that the surface exhibits zones. 

In casual conversations, one hears star-testers speaking confidently about 
locating zones, saying things like "I detected two zones, one at 50% and the other 
at 75% of the radius." These claims assume that the structure of the out-of-focus 
pattern is completely unmixed, which is probably false. Figure 11-5 is a 
calculated pattern from one zone at a known radius, yet this aperture seems 
afflicted with many zones. The multiple ringing will separate out at 30 or 40 
wavelengths defocusing aberration (not shown) but in an obscure manner. Since 
this zone is so far out on the aperture, it interferes with the ever-present dark ring 
on the inside of the bright outer ring. 

One final conclusion can be drawn from both Figs. 11-4 and 11-5. The star test 
is almost too sensitive to interior zonal aberrations. The filtration of Ye-
wavelength total aberration of either situation is mild. The in-focus patterns are 
nearly the same as the unaberrated optics. Yet the zones look severe when 
defocused. If you can only barely detect the existence of zones with defocused 
optics, then you have nothing to fear. They will not damage the focused image in 
most dark-field observing situations. In fact, I have never seen a zone as bad as 
the one depicted in Fig. 11-5. 

11.3    Turned Edges 

Turned-down edge is common enough in both amateur and commercial 
mirrors although it usually takes different forms. In amateur-made mirrors, it is 
often wide and shallow, starting at a radius somewhere around 80% or 90% of 
full aperture and rolling gradually toward the edge. In commercial mirrors, 
turned-down edge is usually right at the perimeter, but it is steeper. The reasons 
for this dichotomy are obscure. Perhaps amateurs, who usually work by hand, are 
capable of putting less pressure on the mirror, or maybe they use a pitch with 
different working characteristics. Commercial mirrors are likely polished with 
stiff pitch and hence are not prone to turned edge, but the machines are capable of 
putting enormous force on the tools. 

For the purpose of this chapter, which is less concerned with mirror making 
than mirror testing by observers, the type of turned edge described is the narrow 
one. Wide turned-down edges will be classified as zones that happen to be at the 
boundary of the mirror. Their behavior at best focus is similar to simple spherical 
overcorrection. Since lower orders of spherical aberration (4th and 6th) have 
already been discussed in Chapter 10, this 
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Fig.  11-5. Star-test patterns of an S-zone at 70% of the disk radius.   Total aberration is i/g 
wavelength. Normal patterns are in the column on the right. 

section will concentrate on the other limiting case. 
Turned edge seems to be more prevalent in fast, large, or thin mirrors, but this rule 

is not rigid. It appears often enough in slow, small, or thick optics. One mirror-making 
author advises that during design of large thin-mirror telescopes, observers plan a larger 
surface than will be expected in the final instrument. Then they can cheerfully (and 
somewhat fatalistically) mask the far edge (Kestner 1981). 
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11.3.1 Aberration Function 
Again, a turned edge can be handled by a very high-order term in the 

spherical aberration equation. Here we choose a much easier path. It is much 
more convenient simply to allow the mirror to be flat out to a certain radius and 
then start a quadratic fall toward the edge. The quadratic nature of the 
downward trend is not based on any physical evidence or theory of the way 
these edges are put on optical surfaces. It is chosen arbitrarily. Other ways to 
describe the descent were tried, and the results didn't change much. 

Figure 11-6 shows such a turned edge as a skirted table. This figure is not 
quite accurate. Best focus for turned edges demands that the inner flat area 
become a very shallow bowl. The aberration function actually used to generate 
the patterns was modified so that it had a minimum variance. 

11.3.2 MTF of Turned Edge 
The filtering of a turned edge is shown in Fig. 11-7. This aberration is very 

compact and highly sloped, so it is no surprise that the light diffracted from the 
edge is diverted far from the center. The MTF drops quickly to reflect the 
damage to the widely spaced bar patterns of a low spatial frequency target. At 
the other end of the scale, the contrast preservation at high spatial frequency is 
much like that of a smaller aperture with a radius the size of the unturned area. 
Light is driven so far from the central core that it doesn't interfere with the 
focused spot, but the outer portion of the aperture is not contributing 
appreciably to the image. A telescope with a turned edge behaves no better than 
a smaller telescope. Worse, at low spatial frequencies, the spurious light from 
the edge region actually harms the image. 

11.3.3 Image Pattern of Turned-Down Edge 
Figure 11-8 shows a focus run of the previous section's turned edge. Since 

this aberration is much more common with reflectors than refractors, a 
moderate obstruction has been added for realism. 

A diffuse glow spreads over the field of view inside focus. Contrast between 
the rings is appreciably lessened. The reverse is true as well—the contrast 
between the rings visible outside of focus is increased. Of course, this effect is 
easier to see with a filter that passes only one color (perhaps a deep green or a 
crimson red), but using such a filter requires a very bright source of light. Also, 
the edge of the diffraction disk softens inside focus. Turned edge, like other 
zones, is easier to detect at long defocus distances. 
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Fig. 11-6. An example aberration function of a turned edge. 

Turned edge starting at 95% radius 
Total aberration = 0.63 wavelength 

 
Fraction of maximum spatial frequency 

Fig. 11-7. Filtration of an unobstructed aperture caused by an example turned edge that reaches 
0.63 wavelength at the far edge. The Hat area inside covers 95% of the diameter. The Strehl ratio is 
slightly higher than 0.8, so this error is about the maximum tolerable. A comparison is made to an 
aperture with the turned portion masked or painted out. The MTF goes to zero at about 0.95 of the 
maximum spatial frequency just as the smaller aperture would. 

At greater distances inside focus, the hazy glow of turned-down edge condenses into 
a smaller bundle, and the edge of the disk seems to bleed light into the outside. This 
behavior appears in Fig. 11-9, where the defocus is shown at 30 wavelengths inside and 
outside of focus. 

Other aberrations also render the diffraction rings more distinct on one side of focus 
than the other—an example is lower-order spherical aberration—but none of them show 
a uniformity of disk illumination. One might well wonder if a turned edge is detectable 
in the presence of spherical aberration or if it is too difficult to tease out of the confused 
image. 
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Fig. 11-8. Image patterns of turned edge starting at 95% the radius and having the value of -0.63 
wavelength right at the edge. Obstruction is 25%, and the normal unaberrated patterns appear in the 
column to the right. 
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normal, defocused               150         

 
Fig. 11-9. Turned edge ±30 wavelengths out of focus. Normal appearance is also shown. The 
Maltese crosses are a moiré effect caused by the sampling rate of the calculated image. They would 
not appear in a real view. 
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If, say, a turned edge as severe as Fig. 11-8 is added to 1/4 wavelength of 
spherical aberration, the turned edge would be visible beyond 20 wavelengths 
defocus (image not shown). The spherical aberration becomes hard to detect 
with 20 wavelengths defocusing aberration, but the turned edge is still there to 
see. Thus, turned edge can indeed be detected in the presence of mild correction 
error. 

When the image is focused inward a long way, the low-brightness soft edge 
of the disk becomes hard to see. Low contrast in the rings is a surer indicator of 
turned edge, and the delicate appearance of the boundary is further evidence. 

Ellison and other subsequent authors pointed out that the edge of the disk 
inside of focus looked "hairy" (Ingalls 1976). It would not be surprising if the 
uncontrolled way a turned edge is applied to a mirror would lead to some 
structuring in the scattered light, thus causing a "hairy" edge. However, I have 
never been sure such an effect is generated by the turned edge or is caused by 
the common turbulence-induced aberration acting on slight low-order spherical 
aberration. 

With the wider and less deeply turned edges characteristic of amateur-made 
mirrors, some modifications of these patterns should be expected. The turned 
area diverts light to lower angles and looks more compact. Also, the optimum 
distance for detecting a soft edge is somewhat nearer the focus than the 20-
wavelength number recommended above. 

Refractors can have turned-down edges, too, but the appearance is reversed. 
Contrasty rings are found inside focus; the soft edge and low contrast rings are 
outside. However, refractors don't tend to exhibit turned edge unless it is wide. 
Normally, the lens cell hides the far edge of the objective behind retaining 
rings. In a way, this advantage compensates for not being able to hide a central 
zone behind a secondary. Few refractors are made so badly that they show 
noticeable turned edges. 

The in-focus images of Fig. 11-8 display the almost negligible effect of 
turned edge on high-resolution applications. The diffuse glow is still there, but 
is unseen compared to the dazzling stellar image. Other than the slightly 
reduced effective aperture, turned edge disturbs low spatial frequencies (or 
wide details) preferentially. 

11.3.4    Signal-to-Noise Ratio of a Turned Edge 
The effect of turned edge is very similar to dirty optics in that it "scatters" 

light throughout the field of view. Therefore, it is instructive and revealing to 
make an equivalent signal-to-noise calculation. In most dark-field observing 
situations, turned edge is like dusty optics or spider diffraction in that small 
amounts matter little. A tiny fraction of an already dim object's 
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light is negligible. However, in the case of lunar-planetary astronomy or 
attempted observation of a dim object next to a bright one, turned edge can 
become a serious source of trouble. How much can be tolerated? 

For planetary astronomy, two things are important: 1) the diameter of the 
induced halo of the turned edge and 2) the amount of light removed from the 
image. The diameter is easy to estimate. Consulting the MTF chart in Fig. 11-7, 
we see that the halfway-down point in the initial sharp drop (marked with oval) 
occurs at about 2% the maximum spatial frequency. This number inverts to a 
radius of about 50λ/D, or about 40 Airy disk radii for a 5% turned edge. In a 200 
mm aperture using yellow-green light, the radius of the glow is about 30 
arcseconds. For a turned-edge amplitude of only 1/8 wavelength, the amount of 
energy removed from the image (and reappearing as noise) is slightly less than 
1% of the total energy. Thus, the SNR can be as bad as 20 dB. 

The really disturbing thing about turned edge is the relative compactness of 
the halo. It doesn't throw the light as far from the image as dust does. Thirty 
arcseconds means that much of the offending light is still inside planetary disks. 
Turned edges are pernicious errors that remove contrast far in excess of their 
nominal magnitudes. The amplitude of a 5% turned edge zone must be 
decreased to 1/25 wavelength before it reaches the 30 dB SNR that was given as 
the tolerance for dust. That amount is scarcely measurable. Of course, a turned 
edge of such a small magnitude hardly behaves in the manner of a turned edge. 
It has begun to compete with interior zones and roughness errors. 

The best way of reducing turned-edge diffraction is to make sure that it is 
extremely narrow. The turned-edge halo will then appear much larger and 
correspondingly dimmer. It will divert light outside planetary disks and diffract 
less light to begin with. For a 2.5% turned edge of the same 1/8 wavelength 
amplitude as the case above, a 24 dB SNR is diffracted to a halo with twice the 
angle. Now, because much of the stray light misses the image and the area of 
the turned edge is smaller, the true SNR increases to 28-30 dB. 

11.3.5    The Width of the Turned Edge 
Usually, when turned edge is less detectable than in Figs. 11-8 and 11-9, 

you have very little to worry about. But if you have a serious problem with an 
edge zone, the radius at which the zone begins to roll is a useful bit of 
information. You can perhaps do further tests with edge masks to try to 
determine the turning radius and severity of the zone, but such checks are 
difficult to interpret. 

Turning radius is easier to determine using a variation of the Foucault 
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test. Try an occluding knife outside the focus of an artificial-source star test 
done at night. The source should be very bright, so move the flashlight close to 
the sphere or use a larger sphere. Mount the knife over one half of an empty 
tube of the same diameter as an eyepiece. (A fragment of a playing card or 
opaque slip of paper works almost as well as a true knife and offers less 
opportunity for accident.) You can do fine adjustments by rotating this 
"eyepiece." Defocus should be 5 mm or more. Arrange the telescope so the 
knife's shadow covers either 1/4 or 3/4 of the aperture, but not half. Do not 
replace this knife edge by a Ronchi ruling. The side-order images of the grating 
disturb interpretations of the edge. 

If the shadow is perfectly straight on the aperture and seems rock-solid, try to 
put the knife nearer to the focus. If you see a blurred, quavery shadow that is 
disturbed by the slightest touch, you are probably too close to focus. Set the 
knife farther away. You are looking for a slight curl of the shadow very near the 
edge of the aperture. The curl becomes severe beyond the turning radius. 

If you can detect the width of a turned edge in this manner, then the rolled 
region is probably too wide to paint as suggested below. What you want to see 
is little or no evidence of a turned edge from this crude test. You only want to 
paint a narrow turned edge. If you detect a wide turned edge, you will find it 
easier to mask the offending region. Use the turning radius determined here to 
calculate the size of the aperture through which you wish to allow light 
transmission. 

11.3.6    Remedies for Turned Edge 
As was shown in the MTF diagram above, the mirror with a turned edge 

performs no better than a smaller perfect aperture at high spatial frequencies 
and worse than the smaller aperture at low spatial frequencies. Clearly, the last 
bit of aperture on the periphery is doing less than nothing for the imaging 
performance. Turned edges gather worthless, imperfectly focused light and 
corrupt otherwise perfect images with it. 

Masking is not an irreversible step, but it requires a little mechanical skill. 
Generally, it involves constructing a narrow annulus and finding a way of 
holding it over the mirror. A mask holder mounted above the mirror works best 
for open-tubed, Dobsonian mountings. Access to the region just above the 
mirror is easy with such a telescope, and installing and adjusting an edge mask 
is convenient. 

Those mirror owners who have a definite diagnosis of turned edge and who 
are willing to accept the considerable risks involved, may significantly 
improve the performance of a telescope mirror by painting it. Painting should 
not be attempted with wide turned edges. The definition of "wide" 
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depends on aperture diameter. Ten millimeters sounds wide for a 150-mm mirror 
and narrow for a 500-mm mirror. 

Painting the mirror, however, works with any telescope and requires only a 
steady hand. Remove the mirror and place it on a lazy-susan or other rotating 
platform. Make sure the mirror is larger than the rotating table under it. Spend 
some time carefully centering and leveling the mirror on the pivot, so that it 
doesn't wobble or rotate eccentrically. 

Slowly spinning the disk, brace your hand in one spot and introduce the 
brush point gingerly onto the mirror's surface, working in from the edge. You are 
in no hurry, so try to lay down a clean line over many revolutions. I don't advise 
using a permanent marker but if you do, be advised the solvent tends to wipe up 
existing marks, so you may have to make repeated passes before the ink stays on 
the mirror. Brushes are less controllable, but painting in this manner results in a 
more saturated obscuration. Do not use an airbrush or spray paint of any sort. 

Perform the painting operation in two steps. The first time, paint out just 1 or 
2 mm of the far edge. If you are fortunate, this narrow ribbon will largely cure 
the edge problems. Star test the mirror again. If the image doesn't improve, 
extend the painted zone inward. At the end of such a procedure, the ugly 
appearance of the mirror can be shocking. Keep in mind, however, that you 
have, in effect, trimmed off the poorest part of the aperture. 

The effect of a corrected turned edge can be seen in the star test. How it will 
improve actual observing is not immediately apparent. Remember, the most 
objectionable feature of a turned edge is a hazy glow in the vicinity of the bright 
point image—20 to 40 Airy radii out. Inspection of the MTF chart reveals a 
quick dip at low spatial frequency. For this 5% wide zone, most of the damage 
has already occurred by the time 2 to 5% of the maximum spatial frequency of 
the MTF target has been reached. If the aperture is 200 mm (8 inches), then 
detail separations less than about 10 to 30 arcseconds are degraded. Masking the 
turned edge will have the most benefit with richly-detailed large objects, such as 
the cores of tight globular clusters or planetary disks. 



Chapter 12 

Chromatic Aberration 

A simple refractor lens focuses light at different distances behind it, 
resulting in color errors. One can choose only one focus at a time, so the 
remaining colors appear as defocused disks. Also, because of the differing 
focal points, the magnification of each color is different and white-light edges 
are blurred into spectra. 

To get an idea of the difficulty involved, hold up a simple one-element lens 
and look at the transmitted image with a low power eyepiece. Such a lens often 
appears in toy telescopes or binoculars. Obviously, chromatic aberration is 
profound. Every bright object appears to be surrounded by a rainbow-hued 
glory, and reasonable imaging only occurs for fields comprised, not 
surprisingly, of only one pure color. 

Early astronomers reduced the importance of simple-lens color error by 
increasing the focal ratio to enormous values. This stratagem increased the 
depth of focus until it encompassed the spread of colors, and they found that 
performance improved. The battle was hard to win, however, because modest 
increases in aperture had to be accompanied by huge increases in the focal 
length, and operational difficulties worsened considerably (King 1955; Bell 
1922).1 

Even today, residual color error is visible in nominally color-corrected 
instruments. Focus binoculars on a bright edge against a darker background (a 
good target is a window from the inside of a large room), and then decenter the 
image. Because the color correction is only approximate for these instruments, 
you will see the smearing associated with color error. In some binoculars, the 
color fringes are violet and green, depending on whether the bright edge is to 
the inside or outside of the field. 

_______________________________________ 
1 Many 5 × 24 finders on department-store telescopes are actually stopped-down simple lenses. 

If a roughly 8-mm stop is visible immediately behind the objective, it is not corrected for color. 
The finder is useless. Discard it. 

219 
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Color errors are not really aberrations in the narrow sense that aberrations 
are departures from the ideal spherical shape of the wavefront. One could easily 
describe an aperture that focuses each color precisely on a different axial point. 
In any given color, the wavefront converges spherically. Such an aperture could 
justifiably be called perfect, yet it would not work as a telescope objective. 

Another important distinction between wavefront (or "geometrical") 
aberrations and chromatic aberrations is the absence of interference effects in 
chromatic aberrations. Different colors do not mutually interfere. For most of 
the discussions appearing in this chapter, wave optics and ray optics are 
identical. 

Whatever the origin of the optical degradation, color error is objectionable, 
and one goal of the star test is to make certain that it is as small as possible. 

12.1     Dispersion 

All of the image patterns presented in this book have been calculated for a 
single wavelength of light, so-called monochromatic radiation. An ideal lens 
would focus all colors at the same lens distance, and lenses would be 
indistinguishable from mirrors. 

Unfortunately, all simple lenses are dispersive. The word dispersion 
represents the inability of all colors of light to move at the same speed in glass. 
Like the word propagation, its source is botany or agriculture. "Dispersion" 
originally referred to randomly spreading seed. Its optical meaning refers to the 
spreading of colors, but such dispersion is anything but random. In fact, if it had 
not been applied already to color error, dispersion might have been a better 
word for what is known today as "light scattering." 

Red light typically has a higher speed in glass than blue light. Thus, red-
light waves outrace blue-light waves while they are traversing the material. The 
net effect is that after passing through a prism blue light is diverted to a larger 
angle than red light. 

Say we have two prism materials, as in Fig. 12-la, that divert or refract 
light to the indicated angles. The average behavior of the two prisms is the 
same. Each kicks yellow light to 10°, but the behavior at either end of the 
spectrum is somewhat different. One glass (let's call it "crown" glass) diverts 
red light to 9° and blue light to 11°. The other glass (call it "flint") spreads the 
spectrum twice as far, to 8° and 12° respectively. This second sample of glass 
is said to have higher dispersion because of this spreading property. 

We can combine these prisms to produce interesting effects. If we invert 
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the flint prism and place it snugly against the crown, as in Fig. 12-lb, we have made an 
approximately plane-parallel window. The combination passes yellow light undeflected, 
but red is pushed up to 1° and blue is bent down to —1°. What we have envisioned here 
is a straight-through dispersive element, one that spreads light into its color components, 
but does not refract it on the average. Such a device was once made and marketed as an 
objective prism by the firm of Merz and Mahler, but its expense prevented wide 
adoption (King 1955, p. 294). The advantage of such a prism was that the telescope 
could be immediately directed at the region of interest. 

 
Fig. 12-1. Simplified achromatism: a) "crown" glass (dark prism) showing dispersion of light and 
"flint" glass exhibiting the same average refractive power but twice the dispersion, b) the two 
glasses combined to generate a "straight-through" rainbow (dispersion without diversion), c) a 
combination that results in an achromatic prism (diversion but not dispersion). 

Figure 12-lc depicts another clever trick we can perform with these two materials. 
This time, we divide the flint prism in half, making another prism that only deflects 
yellow light to 5°. Blue light would exit this half-prism at an angle of 6° and red light at 
4°. If we invert this prism as before and place it close to the crown prism, the exit 
angles of the combination become: yellow, 10° - 5° = 5°; red, 9° - 4° = 5°; and blue, 11° 
- 6° = 5°. 

If one were designing a crystal chandelier, this prism combination would be a 
disaster. Instead of dividing the light into a profusion of sparkling rain- 
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bows, the compound prism keeps the light packed tightly in a white beam. It 
diverts all colors equally. On the other hand, if one were designing telescopes, it 
is just what is required. This device has two important characteristics. It bends 
light and does so colorlessly. What has been demonstrated here are all of the 
essential elements of an achromatic refracting telescope. 

12.2     The Achromatic Lens 

Figure 12-2 shows the progression that must take place to get from the 
achromatic prism to the achromatic lens. If we envision the lens as composed of 
little prism pieces, and allow the divisions to get finer and finer, we eventually 
get to a cylindrical lens. It takes very little imagination to rotate the other way 
and extend the situation to a spherical lens. 

Almost as soon as the concept of dispersion was developed, this trick of 
achromatism was envisioned. All that was left was to find suitable materials. 
Isaac Newton conducted limited experiments where he compared the dispersive 
power of different media with their refractive power. His hasty conclusion was 
that dispersion and refraction were inextricably linked. Thus, dispersion could 
not be counterbalanced without also eliminating bending of the light beam. He 
reached this erroneous result by perhaps relying too much on a visceral feeling 
that dispersion was a property of light itself. By this argument, materials didn't 
matter; dispersion was proportional to refraction and thus always existed until 
lenses were weakened to be no different than windows. Therefore, achromatic 
refractors were impossible. 

 
Fig. 12-2. How a prism achromat leads directly to an achromatic lens. 

Various conflicting statements about Newton's mistake have been made. 
Bell (1922) said that Newton had never published this result, and King (1955) 
referenced a section of Newton's Opticks in which the great physicist 
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despaired of ever curing chromatic aberration but didn't give his reasons. The 
confusion can perhaps be reduced by referencing yet another portion of 
Opticks, where Newton said (Book One, Part II, Prop. Ill, Prob. I, Exper. 
8): 

I found moreover, that when Light goes out of Air through several 
contiguous refracting Mediums as through Water and Glass, and 
thence goes out again into Air, whether the refracting Superficies be 
parallel or inclin'd to one another, that Light as often as by contrary 
Refractions 'tis so corrected, that it emergeth in Lines parallel to 
those in which it was incident, continues ever after to be white. But 
if the emergent Rays be inclined to the incident, the Whiteness of 
the emerging light will by degrees in passing on from the Place of 
Emergence, become tinged in its Edges with Colours. This I try'd by 
refracting Light with Prisms of Glass placed within a Prismatick 
Vessel of Water. 

In other words, conditions leading to the straight-through spectrum of Fig. 
12-lb do not occur, implying Fig. 12-lc is also impossible. He followed this 
experiment with some speculative theorems elaborating his ideas. In Newton's 
defense, I don't believe that discrediting the idea of achromatism was the main 
thrust in this section of Opticks, but the experiment was among those 
interpreted by later readers to be a stronger condemnation than it actually was. 

Partly because of Newton's powerful reputation, opticians gave up on 
achromatic lenses for 50 years. Then, an English gentleman named Chester 
Moor Hall made the first reduced-color lens from two different materials. He 
kept the lens design hidden, although the trick was reverse-engineered by a 
nosy lensmaker who happened to be subcontracted to work on both lenses at 
the same time. The lensmaker didn't realize the importance of the invention, 
and news of it languished until it was redeveloped a generation later by John 
Dollond. When it appeared to be a profitable development, lawsuits were filed 
by London opticians saying that Dollond had stolen the idea. 

Dollond likely had heard rumors about Hall's lens, but certainly he did 
enough experimentation himself to be justly credited with reinventing it. 
Perhaps it would be more accurate to say that Dollond was the first to reduce 
the achromatic lens to common practice. He was certainly the first to announce 
it publicly (King 1955, pp. 144-150). 
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12.3    Residual Chromatic Aberration 

Unfortunately, the ideal materials of Fig. 12-1 do not exist. Most dispersion 
in the range of visible wavelengths originates with resonances in the ultraviolet. 
In the frequency bands of these resonances, the wonderfully transparent 
materials go opaque. The transparent nature of these materials (called 
dielectrics) in the visible spectrum does not persist for every wavelength. Over 
much of the spectrum, the materials are content to accept energy at the entrance 
side and emit it at the exit side with very little loss. The energy brushes over the 
molecules, disturbing them little. However, at certain frequencies these 
materials are unusually excited by the incident energy. For wavelengths near 
resonance (usually about 100 nm), the glass molecules suddenly absorb energy 
and convert it to heat rather than pass it along. 

The material behaves like a child's swing. If the swing is pushed once every 
quarter hour, the pendulum motion does not build. If the swing is pushed three 
times per second, most pushes are poorly timed and once again, pendulum 
motion does not build. If the impulses are carefully timed, the energy lost to the 
swing (or glass) steadily increases. The swing is driven at the resonance 
frequency. The energy contained in the light wave doesn't float through glass 
anymore because it must drive the oscillation in the material. Transparency is 
destroyed (Hecht 1987, p. 63). 

The presence of resonances in the ultraviolet causes the refractive index of 
optical materials over the visible spectrum to increase sharply toward the blue 
end of the spectrum. Most glasses also have a distant resonance in the infrared 
caused by molecular vibration, but this resonance affects the slopes less 
profoundly in the visible band. 

One aim of the lens designer is to choose powers of the lenses in such a 
way as to cause the dispersion of the "crownlike" lens elements to cancel the 
opposite dispersion of the "flintlike" lens elements. Because the dispersion tilts 
sharply at the violet end of the spectrum and the number of acceptable 
materials is limited, the color correction cannot be perfect. Lens designers are 
unable to choose lens powers for every color so that the dispersions nest like 
spoons. If they are combining two lens materials, the differences of refraction 
toward the blue means that they can probably choose only two colors with the 
same focal points. The remainder of the spectrum must go where it will. Each 
color, naturally, will be paired with another color from the opposite side of the 
spectrum, but the designer can deliberately choose only two. 

For most visual telescopes, the two colors that the designer attempts to 
bring to a common focus are red (the Fraunhofer C line at 656 nm) and blue-
green (the Fraunhofer F line at 486 nm).   The focal point of yellow 
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is slightly closer to the objective, and the far ends of the spectrum (deep red 
and violet) are beyond the C-F focus. Violet is farthest away, but that doesn't 
matter. The human eye is not sensitive to violet except at high brightness, so 
the defocused halo of violet light is mostly invisible. The residual color spread 
of achromatic objectives between the two chosen colors is known as the 
secondary spectrum. 

Color corrections do not scale with size. As the diameter of the objective 
increases, it must be made at higher focal ratios to squeeze the light between C 
and F inside the Airy disk. While small 80-mm lenses can still perform 
admirably at f/10, a conventional achromat six inches in diameter must be 
made at f/18.5 to focus the different colors as well (Sidgwick 1955, p. 67; 
Rutten and van Venrooij 1988, p. 55). A.E. Conrady is even more 
conservative, stating that the focal ratio for an 80 mm lens must be f/15 and a 
6-inch should be f/29 (1957, I p. 201). Since secondary spectrum is 1/2000f  for 
ordinary achromats, we can use Appendix Ε to show: 

n
mmDF
Δ

=
8.8

][                                  (12.1) 

where Δn is the number of wavelengths defocusing error we are willing to 
tolerate in the secondary spectrum, D is the aperture diameter, and F is the 
focal ratio. Following the depth-of-focus discussion in Chapter 5, we place Δn 
at 1/2 wavelength. The formula becomes 0.23.D[mm] = F, or f/18 for the 80-
mm aperture and f/35 for the 6-inch. This result is as conservative as 
Conrady's. Nevertheless, I have observed through a 6-inch f/15 refractor and 
was only moderately bothered by the excess color. Perhaps the restriction can 
be eased to 1 wavelength without too much loss. In this case, it drops to 
0.12D[mm] = F, which is the same as Sidgwick. 

This focal-ratio discussion sounds a disturbing note about the so-called 
perfection of conventional refractors. Perhaps it also says something about the 
human tolerance for chromatic errors. 

Lens designers have found other useful telescopic color corrections besides 
pulling C-F into common focus. In the early years of astrophotography, 
special-purpose achromats were corrected for the orthochromatic emulsions 
then in common use. Orthochromatic plates were most sensitive to blue 
through near-ultraviolet light, and completely insensitive to red. Photographic 
telescopes could only be focused by the tedious process of taking actual 
exposures, but they gave sharper images on the plate than a visually-corrected 
lens. 

Since the designer had to take the whole optical system into account, the 
personal preferences of the observer were figured into the design. Color 
correction curves published by Bell (p. 91) showed that the finest makers of 
the 19th century favored bringing the F (blue-green) line into common focus 
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with the deep red at 680 nm (the Β line). Much of this color correction shift is 
presumably caused by the chromatic aberration inherent in the eye and in the 
eyepieces used at the time (Taylor 1983). 

12.4    The Apochromat 

Achromatism can be compared to tying the spectrum in a knot. The 
brightest parts of the visual spectrum are deliberately folded into the tightest 
bundle, with the deep red and the violet ends hanging out like shoelaces. Some 
of the earliest optical workers (most notably Peter Dollond, son of the 
achromatic lens developer) tackled the cause of these spectral defects. Dollond 
could choose from only a handful of glasses. He reasoned that if a flint element 
were "designed" from a composite of two glasses, then the dispersion of that 
element could be tuned so that it would nest more closely with the opposite 
dispersion of the crown element. 

He made and marketed such a triple objective, but apparently the lens was 
designed by trial-and-error. In any case, the glasses of the time were not yet 
good enough to consistently allow such refinement. It was not until 1892 that 
H. Dennis Taylor produced an apochromatic lens using comprehensive optical 
theory. He not only corrected secondary spectrum more fully, but folded the 
violet tail of the spectrum close enough to the visual to allow the blue-sensitive 
photographic plates of the time to use the same focus as the human eye (King 
1955). 

Using three different forms of glass (or two, if exotic glasses are used) 
allows the lens designer to put an extra kink in the dispersion curves, which in 
turn allows the simultaneous focus of three chosen colors. The color spread is 
knotted yet again. Often, the colors selected for common focus are further 
separated than the Praunhofer C and F lines. One such correction brings the 
line C, e, and g into common focus, or red, yellow-green, and violet (Kingslake 
1978, p. 86). The deep-violet and deep-red ends of the spectrum are tucked in 
closer to the visual focus. Typically, the residual tertiary spectrum has been 
reduced a factor of five to 1/10000f  (Rutten and van Venrooij 1988, p. 54). 

However, the proper behavior of the bright portions of the spectrum is no 
guarantee that the spectral tails are close to focus. Much depends on what the 
designer has in mind. Some apochromatic refractors might be designed for 
purely visual use, minimizing the spread of focus between C and F. These 
apochromats might bring violet only a little closer than ordinary doublets. 
Others may be designed for pinpoint photographic images without using filters, 
focusing deep into the violet with only slightly improved visual correction. 
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12.5 Testing Refractors for Geometrical Aberrations 

Since each color, in effect, goes through different apparent thicknesses of 
glass, one would anticipate that the correction for other aberrations might vary 
over the spectrum. In fact, some aberrations aren't corrected at all. Much 
depends on how many free parameters the lens designer is allowed to play 
with. 

For example, the variables of a doublet are all four of the curves, the 
separation of the lenses, the position of the aperture stop, and the glass for-
mulations (of which there are hundreds of important types). If allowed to vary 
these parameters at will, designers can focus two chosen colors simultaneously 
and adequately correct for coma and spherical aberration over much of the 
spectrum. However, if designers are deliberately hamstrung by cost limitations 
or other considerations, they may make a cemented achro-mat out of 
inappropriate glasses. Such conditions can be so confining that the designer 
cannot correct spherical aberration and coma at the same time, even though it 
is possible with careful choice of glasses (Kingslake 1978, p. 171). Most 
makers of quality astronomical refractors are not constrained in this manner, 
but the cheapest consumer refractors may well offer limited aberration 
correction. 

An apochromat focuses three chosen colors to the same point (for a more 
precise definition, see Buchdahl 1970). Enough free parameters remain in 
three-element apochromats that the designers can make a superbly corrected 
lens, minimizing chromatic variation of spherical aberration 
(spherochromatism) at more than one wavelength and suppressing coma. Also, 
apochromats can be adequately corrected at faster focal ratios. Six-inch 
apochromats are routinely made at f/9. An apochromat should present as good 
an image as diffraction will allow, and should accordingly be tested 
thoroughly. 

You should test for geometrical aberrations in refractors by using an 
eyepiece filter. In fact, using such a filter to suppress the polychromatic nature 
of white light is recommended even for inspection of reflector optics. A very 
deep yellow or green filter is recommended. After you have tested at a central 
color, you may wish to change filters to red or blue to verify that other 
aberrations are small at the edges of the visual spectrum. Except for limiting 
the color band, testing refractors for other aberrations is the same as testing 
reflectors. 

12.6 The Star Test for Chromatic Aberration 

Different colors do not mutually interfere. Hence, chromatic aberration does 
not manifest itself in modifications of the diffraction rings, either 
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focused or defocused. Chromatic aberration appears as a different focus 
position for each color. The shift can be a lateral one, as for a mild prism, or it 
can be a longitudinal offset. For all real lenses, each color has a slightly 
different focal length. 

To see color effects, pull off all filters and focus on a white star or an 
artificial source. Be sure to filter the flashlight for a nighttime artificial-source 
test of chromatic aberration (see Chapter 5). 

12.6.1     Wedge, Assembly Errors, and Atmospheric Spectra 
Look for smearing of the focused image into a short lateral spectrum, the 

effect of decentering or wedge in optical components. Either of these problems 
puts a red fringe on one side of the image and a blue fringe on the other side, 
although the yellowish light of the outer planets often mixes with this light to 
make it appear green. Decentering may also cause other aberrations, depending 
on the details. 

Decentering is a sideways shift of the elements with respect to one another. 
Wedge is an extremely shallow prism that is added to the optical system. It 
results from having an element thicker on one side than the other. After years of 
trouble-free use, wedge can appear suddenly after the lens is disassembled for 
cleaning. Makers sometimes cleverly remove the last bit of wedge in their 
objectives by canceling it between lens elements. Thus, if the crown element 
has a wedge of 0.04 mm and the flint element has a wedge of 0.03 mm with a 
maximum tolerance of 0.02 mm, the total wedge can be reduced to 0.01 mm by 
putting the thick part of the crown next to the thin part of the flint. An 
unsuspecting owner can turn these elements to yield a total wedge of 0.07 mm, 
or more than 3 times the tolerance. Upon reassembling the lens elements, look 
for alignment marks, either arrows or scratches, on the edges of the disks. 

Another accident can also occur when refractor lenses are taken apart for 
cleaning. Refractors are so long-lived that even well cared-for instruments will 
eventually acquire too much internal grime. Occasionally, owners improperly 
invert the crown element during cleaning. This error sometimes happens even 
to huge observatory instruments, as is documented in Leslie Peltier's Starlight 
Nights (1965). He had obtained a 12-inch Clark refractor that had a hideous 
purple glow around star images. Doubting that the Clarks would deliberately 
release such a poor instrument, since it would damage their reputation in 
professional circles, Peltier speculated that the crown element had been 
inadvertently flipped during washing in the past. He inverted the element once 
again, and recovered the fine performance of the original lens design. Any 
instrument that is air-spaced may suffer this indignity, regardless of size. I once 
saw it in a good 2-inch refractor, but in 
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the case of this miniature doublet, the inversion also damaged the spherical 
correction. 

Usually, the direction of spectral dispersion is vertical. In this case, the 
atmosphere and not the telescope is at fault. The same spectrum would appear 
in a similar-sized reflector, and certainly no mechanism exists in a reflector to 
cause the same dispersion. The presence of a vertical spectrum could either be 
caused by cool air puddling at the bottom of the telescope, or (more likely) a 
slight prismatic effect in the atmosphere itself. 

Observers commonly witness a color spread in low-lying planets and bright 
stars. Any object below 45° elevation is likely to be smeared to a small extent. 
Such errors are unlikely for artificial sources, but in the sky they are all too 
prevalent. Rotation of the tube will serve to isolate this error to air effects. 
Choose a star closer to zenith. 

12.6.2    Star Test for Conventional Astronomical Visual Doublets 
The design of the crown-flint refractor lens froze into place in the 19th 

century. Individual makers chose slightly different residual dispersions curves, 
but all were more-or-less bound by the availability of materials. The quality and 
homogeneity of materials have improved, but the simplest astronomical 
refractors are still made using designs that would have been recognized by 
makers in the 1800s. 

The following star test does not apply to modern advanced refractors made 
from uncommon materials. It is based on a star test done by the author on a 4-
inch f/15 Alvan Clark refractor built in 1881. This test used Polaris as a target. 
It is essentially the same description found in Taylor (in 1891), who probably 
used similar instruments, and would apply to ordinary doublets even today. 

Inside focus, a very pale yellow-green disk with a trace of a magenta fringe 
is visible. Just beyond focus to the outside, a somewhat surprising red spot 
appears in the center. This wonderfully tiny crimson point of light is 
astonishing to someone who has never noticed it before. Taylor says that its 
origin is in the deep red beyond the C line. 

An additional factor contributes to the appearance of this red dot. It 
approximately coincides with the location for which yellow-green is 1 
wavelength out of focus. The diffraction pattern of yellow-green light for this 
situation looks like Fig. 12-3a, which shows an annulus with a hole neatly 
punched in it. Eq. 5.1 gives the focus shift to +1 wavelength defocus as 8F2λ. 
The fraction of the focal length is just 8F2λ/f. For a 4-inch f/15 refractor in 
yellow-green light this ratio amounts to 8(225)(2.2 × 10-5)/60 = 0.00066. 



 

 

defocus = 1 defocus = 0 

a) yellow-green b) red, same position
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Fig. 12-3. The "red dot" effect just beyond focus in conventional doublet refractors. 

For conventional doublet refractors, the difference between yellow-green 
and C (red) focus is 0.0005 times the focal length. For the same location as the 
yellow-green focus of Fig. 12-3a, red light slightly beyond the C Fraunhofer line 
is being focused in the pattern of Fig. 12-3b. Thus, a convenient little hole is 
present in the bright yellow-green diffraction pattern through which the red 
focus peeks. 

Beyond the red spot, the pale greenish disk expands once more. Taylor says 
that sometimes a green fringe appears on this disk, but it didn't appear or was 
very weak in the Clark. Farther out, an indefinite blue focus is supposed to form 
at the center. Focus is much too strong a word, however. The 4-inch showed a 
blue-violet fuzzy ball that never condensed well enough to form what could be 
termed a focus. 

Taylor's observations were done with a Huygenian eyepiece while the 
modern views were supplied with a modified Orthoscopic eyepiece. This 
difference probably accounts for the few changes, together with variations in 
optical design. Also, the Clark was not coated, and it had the residual coloration 
of glasses at the time it was made, thus slightly affecting comparisons with 
modern doublets. 

A dim in-focus image is mostly colorless. Its most objectionable feature is a 
watery purple or violet glow that forms around bright objects such as the planet 
Venus. Taylor said it best when he described a planetary image as a sketch in 
black and white, where the artist made a last pass dabbing on the far red and 
violet colors with a sponge. However, the bad effects of this halo should not be 
exaggerated. It attracts notice on only the most dazzling objects, and even then 
it seems to interfere only slightly with the ability to discern detail. On 
conventional refractors smaller than 80 mm, this purple glow is almost 
unnoticeable. It begins to become intrusive at 4 
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and 5 inches (100 to 130 millimeters), but only for large instruments does it 
become objectionable. I saw it in a 6-inch f/15 refractor used as a guide 
telescope for the Schottland 16-inch Schmidt camera (King 1955, p. 370). 
Saturn had a crisp white-yellow disk surrounded by a bright purple blur. 

Poorly made modern doublets show behavior that does not match the usual 
C-F color correction. A strong halo of red or greenish-blue surrounding the 
focused image is certainly a reason for concern. Such behavior is not normal. 

Lesser amounts of chromatic aberration can be also be discerned by 
examining the fringes of the image just inside focus. The wavelength that 
focuses closest to the lens in a normal doublet is about 550 or 560 nm (yellow-
green). If the place where the achromat folds the spectrum is too close to the red 
end, the inside-focus fringe is blue with perhaps a small green component. If the 
fold is too close to the blue end, the fringe is a scarlet red instead of magenta 
(Sidgwick 1955). 

12.6.3    Star Test of Apochromats or Advanced Refractors 
Coloration is far less noticeable in apochromats. Taylor claimed that the out-

of-focus star disks in his photovisual lenses were virtually colorless. I have 
never inspected a Cooke photovisual lens, so I cannot provide confirmation. 
According to Sidgwick (1955, p. 201), a focused photovisual lens has a dazzling 
yellow-green disk with a purplish-red fringe. It should be pointed out that a 
weak red fringe appears on point sources even in reflectors, although it is 
difficult to observe. The diameter of the diffraction disk increases with long 
wavelengths, and the telescope is unable to pack red light into the small bundle. 

My apochromatic refractor has a slight magenta fringe at a short distance 
inside focus and a green fringe at the same position outside focus. In focus, no 
color is obvious. This description is consistent with yellow or green focus 
nearest the objective and red or blue focus slightly farther away. A blurred blue-
violet focus forms nowhere. Presumably, violet is folded back near the focus of 
other colors. Because violet is not bright, it can no longer be seen in the "noise" 
of the other strong colors. The location of the red focus is not far enough behind 
that of yellow-green to be distinctly noticeable. 

The white appearance of a focused star image or the muting of color in views 
of the planet Venus (in comparison with a conventional doublet) should be a 
powerful indicator that an apochromat or advanced refractor is properly color-
corrected. You should tolerate little spurious color in any modern triplet or 
fluorite-doublet design. Planetary images should not show easily discerned 
blurry colors. 
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12.6.4 Chromatic Effects in the Eye 
Make certain you are not blaming the objective lens for color errors in your 

own eye. Most people do not realize that their eyes are not achromatic. In fact, 
the erroneous assumption that the human eye is achromatic led later scientists to 
question Newton's research on dispersion. In normal daylight vision, the eye-
brain system is able to process out much of the color error encountered. 
Astronomy is no common activity, however, and the processing is subverted 
during observation. Taylor mentions how the apparent color correction of a 
telescope was upset with change of magnification and exit pupil. 

The answer to this problem is to use the eye at a reduced pupil size. As the 
magnification of the telescope increases, it illuminates less of the eye's pupil. 
The eye's color correction improves with smaller pupil size for the same reason 
that refractors perform better at high focal ratio. Most perceived chromatic 
aberration is then produced in the telescope instead of the eye. Star test with a 
short focal length eyepiece. 

12.6.5 The Eyepiece 
An objective can present a perfectly acceptable image that is destroyed by 

imperfect achromatism in the eyepiece. One may be unjustly blaming the 
telescope's objective lens for an error that happens later in the optical train. 

Fortunately, the modern general-purpose eyepiece is designed to work 
passably well even with a steep f/4 light cone. Most refractors that we would 
want to star test operate at f/9 and higher. At these mild focal ratios, compound 
eyepieces such as Orthoscopies or Plössls work superbly. Not unless they have 
been improperly made or assembled do they add significant chromatic 
aberration to the image. Still, they perform best when the star is in the center of 
the field. Do not make chromatic aberration judgments on decentered stars. 

The easiest way of checking your eyepiece is to change to a different 
eyepiece and see if the color error goes away. Also, put the suspect eyepiece in 
a reflecting telescope and see if the color difficulty is still present. 

12.7     Conclusions and Remedies 

About the only optical problems discussed in this chapter that are 
changeable are those that deal with atmospheric effects or improper assembly 
of the lens cell. Most other color errors must be handled at the factory. You 
must be very cautious in blaming a perceived chromatic aberration on the 
instrument. Personally, I have never seen a quality refractor 
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with grossly improper correction of chromatic aberration. I have heard of a few 
cases secondhand. Even department-store models seem to get color correction 
right although they botch nearly every mechanical feature on the instrument. I 
have seen fast richest-field refractors or large binoculars that had only marginal 
color correction, but specialty refractors must be judged to a different standard 
than the lunar-planetary models. Owners of these telescopes should realize that 
they have traded increased color error for a wider field. 

Testing with a bad eyepiece presents the greatest opportunity for error. Be 
certain that the suspected chromatic aberration appears in many eyepieces, 
preferably not of the same type. Do not test with the Huygenian or Ramsden 
eyepieces that are often included with the telescope. If a Barlow is used, make 
certain that it is achromatic. Because of the high focal ratios of most refractors, 
some companies have been known to include simple-lens Barlows. Such a lens 
is usable, but it generates an incorrect color correction in the star test. Perform 
the test at high magnification to avoid color problems in your eye, and be 
absolutely sure that an unusual coloration in your light source is not shifting the 
results. Finally, test on multiple occasions before the final assessment is made. 



Chapter 13 

Roughness 

This chapter discusses the diffraction effects caused by quasi-random or 
asymmetric errors polished into the surface of the glass. The circular rings 
break up into tiny speckles in focused images, and the out-of-focus disk shows 
non-circular detail. The reader should take four important points from this 
chapter: 

1. Wavefront roughness usually follows a continuous spectrum at 
increasingly finer scales, which telescope makers arbitrarily divide into 
categories such as "dog-biscuit" or "microripple." However, such 
distinctions are more matters of nomenclature than descriptions of real 
phenomena. 

2. Medium-scale roughness (primary ripple or dog-biscuit) errors are the 
ones which most severely damage the image because they don't divert 
light far from the core of the image. The scattered light is hence more 
condensed and brighter. 

3. Roughness errors are difficult to distinguish from turbulence, and 
careful star-testing is required to avoid unfairly judging an instrument. 
Tolerance for roughness errors must be viewed in the context 
of likely turbulence errors. 

4. Roughness at the scale of microripple is of interest only to makers 
of specialized instruments who have already reduced other forms of 
diffracted light to the vanishing point. Microripple of small amplitude 
has little relevance to general-purpose instruments. 

235 
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13.1     Roughness Scales and Effects 

Harsh methods of polishing and use of fast polishing compounds can lead to 
random or nonperiodic error that is not a circle of revolution. This so-called 
"surface roughness" is not generally viewed as a problem on the global scale, the 
way figuring errors are perceived, but it can be harmful to the image in its own 
way. 

We must carefully define what is meant by surface scale before introducing 
the deformations of that surface. Think of the aperture as being expanded to the 
size of the United States. The spherical curvature of the Earth is analogous to the 
focusing curvature of the wavefront. In the aberration function plots, this 
curvature has been removed as a noninstructive universal constant. The map has 
been flattened on the average. 

Figuring errors are large-scale deformations. An example is spherical 
overcorrection, which starts fairly level at the center of the aperture and rises to 
a peak at the 70% zone. The aberration function then falls rapidly until it reaches 
the edge. Similarly, the center of the U.S. starts fairly flat in the plains states, 
rises toward the Appalachian or Rocky Mountain ranges, and then falls rapidly 
toward the oceans. 

No serious mapmaker would suggest that the U.S. topography could be 
completely represented by a simple model of two ridges with a flat area 
between. Nevertheless, we may usefully describe the coarsest features of the 
landscape with broad-brush concepts like continental divide and leave the 
narrower details for later. Describing the figuring errors of the optical surface as 
"spherical aberration" or "zonal defects" is that sort of large-scale reference. 
Here "scale" refers not to how high the aberration is but how wide it is, or rather 
how persistent the aberration is over long distances. 

To improve the map, the landscape is refined by adding rivers or water-
sheds. Many of these features extend over areas the size of an entire state. On 
the mirror, we can decide to measure roughness with ruler divisions of around 
1/10 or 1/20 pf the aperture. These are "medium-scale" roughness errors. We 
could also map individual mountains or county-sized variations in the terrain 
and tile analogous "small-scale" roughness errors. With sufficient magnification, 
the map could chart the position of boulders, plowed fields and ditches. 
likewise, if we examine the optics on the molecular scale, we see a convoluted 
surface, but such errors are so much smaller than the wavelength of visual light 
that they cannot be sensed by ordinary means. The wavefront remains flat after 
encountering molecule-sized roughness. 

Medium-scale roughness errors go by the colorful name "dog biscuit" and 
the less-colorful name "primary ripple." Their greatest width scale 
approximately matches the spaces between grooves on the polishing tool. These 
channels are always cut or cast into the polisher to provide space 
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for the pitch to spread with pressure and to supply reserves of the finely-
suspended polishing abrasive. The grooves are a necessary evil. If they are not 
cut into the lap, large-scale shape errors are generated that are even worse than 
moderate amounts of roughness. 

Small-scale roughness errors, called "microripple," have spacings of about 1 
to 2 mm. The cause of these errors is less obvious than primary ripple, but their 
origin is probably found in the choice and use of polishing materials. Cerium-
oxide polishing compound seems to give rougher results than rouge. Waxy laps 
yield more rippled surfaces than pure pitch, and paper laps are worse than wax. 
At the basic level, however, non-uniformities in the glass itself seem to limit the 
smoothness. Texereau claims that the lap is able to attack the surface of the 
mirror through a combination of physical and chemical means, and that once 
begun, such errors are self-sustaining (Twyman 1988, pp. 578-584; Texereau 
1984, pp. 88-91). 

Certain fast-acting laps deliver a roughness with characteristic dimensions 
intermediate in scale between classic primary ripple and microripple, 
descriptively called "lemon-peel" surfaces. This appearance is rare in in-
struments intended for astronomical use, however. Usually, telescopes are 
polished on gentler materials. 

We might expect the diffraction image from the roughness facets char-
acteristic of primary ripple to be 5 to 20 times larger than the unaberrated 
image, but that simplified logic does not take into account the accidental 
correlations that occur when nearby scattering facets act in phase with one 
another. Antinodal bright areas and nodal dark regions will form. The net effect 
of mild primary ripple is to blow the scattered light into a knobby glow 
surrounding the image, which has its greatest brightness within a radius less 
than 5 times the Airy disk. Such scattered light can be a bad problem because it 
is condensed enough to easily see. 

Let's compare that defect with the likely behavior of microripple. Texereau 
states that microripple is occasionally as bad as 6 nm on the wavefront and has 
an average spacing as small as 1 mm (Twyman 1988, p. 580). However, we are 
fortunate that the slope of each 1 mm facet is seldom correlated with the slopes 
from nearby facets, so the effective apertures of the facets only statistically 
combine. This 6 nm case is also the worst one; most wave-fronts have 
microripple below 1 nm (< 1/500 wavelength). Because of the small size and 
lack of correlation of the scattering surfaces, the diffraction pattern of scattered 
light from microripple is a shattered dim glow, quite similar to the aura that 
occurs with a turned-down edge. Microripple of small amplitude is hard to see 
with the Foucault knife-edge test. It requires specialized equipment to detect 
unambiguously. 

When roughness is small, as it is for optics, it only affects the diffraction 
shape of the image in a minor way. It removes light from the focused image 
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and shoves it out into a blotchy halo of small diameter for primary ripple and 
large diameter for microripple. The missing energy is calculated by seeing how 
much the central intensity is lessened. 

The Strehl ratio of roughness can be calculated from an approximation 
(Born and Wolf 1980, p. 464). Here is represents the Strehl ratio at best focus 
and CTRMS is the root-mean-square deviation of the wavefront (in wavelengths) 
as measured from the reference sphere centered on best focus: 

                                         (13.1) 2)2(1 RMSSi πσ−≈

For example, a 1/14.05-wavelength RMS deviation yields a Strehl ratio of 
0.8 (the Maréchal tolerance). A 1/20-wavelength error typical of noticeable 
primary ripple gives a ratio of 0.9. A severe case of microripple might have a 
deviation as large as 1/100 wavelength, so the intensity is reduced only to 0.996. 
Clearly, microripple has a very different character than primary ripple. 

Another approximation to the Strehl ratio has been given by Mahajan 
(1982): 

2)2( RMSeiS
πσ−≈  (13.2) 

It gives a more accurate number than Eq. 13.1 at large aberration amplitudes. 
We can invert Eq. 13.2 for a iS = 0.8 to define a "Mahajan tolerance" of about 
1/13 wavelength RMS. For small roughnesses, however, the difference between 
these approximations is negligible. 

13.2     The Terminology of Roughness 

We must distinguish the nomenclature from the reality of surface error. 
Roughness is typically modeled either as a continuous spectrum from large 
scale to small scale or as a discontinuous composite scale spectrum. The 
"spectrum" in this case is not composed of light intensities plotted versus 
colors, but magnitude of roughness versus width scales. A composite scale is 
something like huge swells of water on which are superimposed tiny wind-
blown capillary waves—smooth undulations with wrinkles. The terminology of 
calling lap-sized roughness "primary ripple" and small roughness "microripple" 
originates from assuming that two separate causes generate composite-scale 
roughness. 

I have seen mirrors that obviously obeyed this composite-scale model very 
well. They were covered with smooth, wavy roughness that displayed little of 
the smaller-scale roughness in between the primary ripple and microripple. 
More often, though, mirrors appear less and less rough at more diminishing 
scales, but there is no one scale at which the tester can say the 
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roughness stops (an example appears in Fig. 13-1). Such names as "primary 
ripple" mean less on such surfaces because there is always a scale just below it. 
We might call it a "not-so-large ripple" scale, followed closely by an "even 
smaller ripple" scale. The model described below follows this continuous 
spectrum behavior instead of the composite-scale that the terminology is based 
on. The words will continue to be used because they are convenient and firmly 
lodged in the literature. 

Another reason for using the artificial divisions of roughness into medium-
scale versus small-scale is that they are typically found in different tests. The 
Foucault test is good down to a small-scale of roughness intermediate between 
primary and microripple, but then its sensitivity fails. The investigation of 
microripple requires a phase-interference test that deliberately suppresses 
sensitivity to large-scale error. 

13.3    Medium-Scale Roughness, or Primary Ripple 
The appearance of a mirror suffering from primary ripple is shown in the 

Foucault test photograph of Fig. 13-1. The roughness is only apparent in the 
center of the mirror at this knife setting. Ripple extends into the bright and dark 
regions, though it is less visible in these areas. The roughness is dimly seen as a 
random structuring with a set of superimposed grooves beginning in the center 
and extending outward. 

 
Fig. 13-1. Roughness visible in the central zone of a mirror in the Foucault test. At right: contrast 
is enhanced by subtracting an unsharp-mask image. 

This 6-inch (150-mm) f/5 mirror was produced during the manufacturing 
boom at the last return of periodic comet Halley and is typical of the sloppy 
fabrication practices of the time. As bad as it looks, the roughness is estimated 
at only somewhere between 1/10 or 1/20 wavelength RMS (peak-to-valley 
roughness between l/3 and l/5-wavelength).  Spherical aberration 
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amounting to 1 wavelength overcorrection was also found during this bench test. 
Obviously, the spherical aberration was the worst failing. 

Your eye also suffers from medium-scale roughness. Take aluminum foil and 
perforate it with a pin. Hold the foil about 8 to 15 cm in front of your eye and 
look through the pinhole at a frosted incandescent light bulb. Try to focus your 
eye on the lamp, not the pinhole, and cover the other eye. If you have punched 
the right size hole in the foil, you should see a mottled disk that roughly 
approximates the out-of-focus patterns seen in this book. The outside ring is 
perhaps the only one clearly delineated. The appearance may be cleared up 
slightly by placing a colored filter between the lamp and the pinhole. 

As you blink, horizontal lines appear briefly on the defocused disk. You can 
see that some of the details change with every blink. They are probably caused 
by variations of the moisture thickness on the cornea. Depending on how bright 
the light is, you may also see some dim radial spikes outside the disk. These 
spikes may be caused by diffraction from the non-circular iris opening or streaks 
in the roughness. 

The roughness is visible as coarseness in the expanded disk. This coarseness 
does not vary from blink to blink. The aberration is many wavelengths high, so 
the appearance of individual rings is obscured and confused. When I was 19, I 
had a fleck of metal removed from my cornea, and the evidence of the trauma 
can still be seen in the out-of-focus image. The roughness can originate from 
corneal defects, surface roughness in the eye lens, and non-uniformities in the 
refractive index of the eye lens. 

The human eye is not even close to diffraction-limited. An eye with a 3-mm 
iris opening (typical during daylight) can theoretically resolve lines separated by 
0.6 arcminutes, but a person who resolves lines only 1 arcminute apart is 
deemed to have excellent vision. How can we test telescopes to the diffraction 
limit through such an imperfect aperture? 

In fact, the answer to this seeming paradox is quite simple. Angular errors in 
the instrument are magnified until they are bigger than errors in the eye. Once 
the separation between the finest possible details have been magnified beyond 5 
arcminutes (i.e., 1/6 the diameter of the Moon), aberrations in the telescope 
begin to dominate aberrations in the eye. A 1-ineh aperture should resolve lines 
separated by 0.092 arcminutes, so sufficient image size is reached by  
5/0.092≅ 50 power/inch (20 power/cm). Somewhere beyond this magnification, 
even perfect telescopic images begin to become fuzzy. 

Ironically, some people boast about telescopes that can "withstand more 
than 100 power/inch" (40 per cm). What they don't realize is that they're not 
bragging about the telescopes. They are inadvertently admitting the poor quality 
of their own visual acuities. When using extremely high mag- 
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nifications beyond 100/inch, the diffraction disk appears bigger than two-thirds 
the angular diameter of the full Moon. 

13.3.1    The Aberration Function of Medium-Scale Roughness 
To generate rough wavefronts, the fractal model described in the chapter on 

turbulence is again used, with certain modifications. 
The first change is to suppress midpoint deviations for two iterations. This 

step ensures that the surfaces so generated will be uncorrelated at distances 
greater than 1/8 to 1/4 of the aperture. One doesn't expect that medium-scale 
roughness will persist over long distances, and by not allowing the surface to 
deviate until it is divided into a grid of 16 squares, this correlation scale is 
achieved. Only 16 points out of almost 13,000 are artificially clamped to zero, 
but the entire character of the surface is changed. 

The other modification is to avoid quenching the roughness. Figure 13-1 
shows fine detail over scales smaller than the tool spacing (presumably about 
1/8 of the diameter). In the case of turbulence it was desirable to suppress the 
deviation at small scale because no mechanism existed to produce it. 
Turbulence cells have a quasi-period of about 10 cm. Roughness in the glass, 
because it originates from many causes at a number of scales, will be modeled 
here to behave as a self-similar fractal. 

 
Fig. 13-2. The aberration function of medium-scale roughness, also called "primary ripple" or "dog 
biscuit." 

Figure 13-2 shows an example aberration function of medium-scale 
roughness. The streaks visible in Fig. 13-1 are not represented in this algorithm. 
One expects such grooves to diffract light into low-contrast spikes at right 
angles to their extent (as a spider vane does). We must not overemphasize their 
importance, however. The visual perception system tries to create order in what 
we see. It is especially fond of straight lines and often creates a line where only 
a hint of one is actually present. Orion's Belt, for example, is curved a great 
deal.   The eye imposes linearity because it 
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prefers linearity. 

13.3.2     Filtering Effects of Medium-Scale Roughness 
Because the scale of roughness is much smaller than the whole aperture, one 

expects a brisk drop at low spatial frequencies, a condition similar to turned 
edge. The MTF thereafter should remain a fairly fixed fraction of the perfect 
MTF. Thus, the average degradation drops from unity to a constant at about the 
correlation length (Schroeder 1987, p. 208). We see in Fig. 13-3 that the 
previous guess of a correlation length of 1/4 to 1/8 of the aperture is a good one. 
The sagging of the curves seems to have reached a steady fraction of the perfect 
aperture's MTF at about that range. 

 

Fig. 13-3. Filtration caused by primary ripple.  Three amounts are shown: 0.1, 0.05, and 0.025 
wavelengths RMS wavefront deviation. 

Roughness aberration is nonsymmetric, so three curves are plotted for target 
patterns with bars oriented up-down, left-right, and at a 45° angle. Because 
these curves represent a single realization of the rough surface rather than an 
average over many such surfaces, the MTF wiggles somewhat. These curves 
are examples of the variations that can be expected from changes in the MTF-
target orientation or from slightly different surfaces. 

The degradation is severe for 0.1 wavelength RMS wavefronts, but it 
improves rapidly for smaller roughnesses. The quality is acceptable for 
wavefront roughnesses less than 0.05 wavelength RMS. Some manufacturers 
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guarantee optics that smooth, but they always give the specification on the 
surface rather than the wavefront. Read claims carefully. 

Also shown is the smooth wavefront with RMS deviation of only 1/40 
wavelength (1/80 wavelength on a mirror surface). If any reasonable care is 
taken, all astronomical optics can be made this smooth. Global wave-front 
aberrations are difficult to reduce below Y28 wavelength RMS (1/8 wavelength 
peak-to-valley), but optics can easily be smoothed until the wavefront 
roughness is less than 1/40 wavelength RMS deviation. 

13.3.3 Star Test on Medium-Scale Roughness 
Two focus runs appear in Fig. 13-4 and Fig. 13-5. The first is an image 

sequence of an otherwise perfect 1/40-wavelength RMS roughness wavefront. 
Even though the wavefront is very good, the roughness is detectable in the out-
of-focus images. Figure 13-5 doubles the aberration and uses a different 
fractally-derived wavefront. This 1/20-wavelength RMS aperture is acceptable 
in the MTF chart, yet it seriously distorts out-of-focus images. Fortunately, it 
seems to tuck away the messiness visible out-of-focus to yield a fairly crisp 
pattern while in focus. If this pattern were turbulence, it would be at least a 9 
on the 1-10 Pickering seeing scale. 

We go approximately 8 wavelengths on either side of focus (Table 5-1). If 
the wavefront has primary ripple close to 1/40 wavelength RMS, the effects of 
roughness are very delicate and hard to detect. At 1/20 wavelength RMS (about 
the limit of what you should tolerate), you will see it all too plainly. 

Often, you must test for roughness alongside some spherical aberration. 
Roughness is easier to see on the soft-edged side of focus. The dim outer 
portions of the disk flare into a twisted, asterisk-like pattern. Don't concentrate 
on the roughness until you have determined that spherical aberration is 
acceptable. Spherical correction errors are much more damaging to high 
resolution images than roughness errors because their width scale is so large. 

13.3.4 Roughness and Turbulence 
Turbulence closely resembles roughness, so it interferes strongly with the 

star test for that aberration. Thus, roughness is nearly impossible to check 
under real skies using an actual star. Nights where the air is absolutely still are 
so rare that they will never coincide with a deliberately-planned star test. 
Besides, star tests are the last thing the observer wants to do on nights of 
exceptional steadiness. 

An artificial source is often crucial to test for roughness. Also, testers cannot 
check for primary ripple anytime and anywhere. They must try for a 
serendipitous combination of time and place that results in a tranquil test- 
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Fig. 13-4. Medium-scale roughness of 1/±o wavelength RMS with defocusing aberration from -8 to 
+8 wavelengths. Obstruction is 25% and the perfect image is seen in the right column. 

ing path. Maybe the necessary conditions will occur during a night when the 
temperature is not dropping too rapidly. The likeliest good tests are conducted 
on a windless evening or a very early morning over grass. The artificial source 
test goes best when the flashlight and sphere are set up in the bright period after 
sunset but before twilight has ended. Use the Sun to illuminate the sphere in the 
early morning. If these times are difficult to arrange, test for roughness with the 
artificial source at night. (See Hufnagel 
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Fig. 13-5. Another primary ripple wave front, this time having a statistical deviation of 1/20 
wavelength RMS, is focused from —8 to +8 wavelengths. The smooth wavefront is to the right. 

1993, pp. 6-12.) 
Also, you must be realistic in your expectations. Roughness is only important 

if it is a reasonable fraction of the similar turbulence aberration. Thus, roughness 
is judged to be objectionable only if it appears during the nights that turbulence 
affects the telescope least. If the image is flickering a small amount when one sets 
up the test, the result is not useless. 

See if the fixed roughness pattern is visible even against the relatively 
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light turbulence in front of an artificial source. If you cannot discern a fixed 
roughness pattern under these excellent conditions, then you may be assured that 
during actual use the roughness is affecting the image little. 

The scale must also slide a little to accommodate local conditions. If seeing is 
abysmal during 99% of the nights at your location, perhaps roughness is less 
important. In locations with good seeing, roughness standards must be tighter. 

If roughness is still grossly objectionable even after taking these mitigating 
conditions into account, the optics must be refigured. 

13.4     Small-Scale Roughness, or Microripple 

The original concern over microripple stems from efforts early in the 20th 
century to observe the solar atmosphere all of the time, not just during solar 
eclipses. The solar corona is a thin, high-temperature gas that extends out several 
solar diameters. Observations during eclipses were excellent, but resembled 
infrequent snapshots. Scientists wanted a method to view the inner corona daily 
and to monitor its changes. The corona is brighter than the full Moon, but it can 
be lost next to the hellish intensity of the Sun. 

To make a telescope capable of blocking out parasitic scattered light requires 
more advanced methods than the empirical baffling recipes generally used by 
astronomers. André Couder stated that the intensity of the corona 5 arcminutes 
from an occluded solar image is only about 1 millionth as strong as the light 
intensity streaming from the unblocked Sun. Even nonuniformities in the glass of 
his coronagraph lens scattered light only a little less intense. He estimated the 
scattering from the atmosphere, even on a clear mountaintop, was about half as 
intense as the corona, and the scattering from the most carefully cleaned lens was 
equally bright (quoted by Twyman 1988, p. 585). Clearly, contrast was already 
suffering badly from unavoidable effects, and little room was left for scattering 
by microripple. The severe 1/100 wavelength RMS microripple example 
mentioned above by Texereau would be unacceptable. It scatters 0.4% of the 
energy striking the aperture, more than a thousand times too bright. 

Texereau also describes a finely polished surface with microripple ap-
proximately 0.05 nm RMS deviation, or about 1/11,000 wavelength. This value 
inserted into Eq. 13.1 results in an intensity reduced (2π/11,000)2 from 1, or only 
3 × 10-7. This tiny amount of scattered light would be even less intense by the 
time it was considered at an angle of 5 arcminutes. Such a surface is sufficiently 
smooth to be used in a coronagraph (Texereau 1984, p. 88). 

Optics exhibiting the primary ripple of Fig. 13-1 demand little or no 
attention to the relatively subtle effect of microripple.   In fact, the frac- 
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tal model of medium-scale roughness automatically includes a moderate amount 
of microripple (about 1/1000 wavelength RMS), but the presence of coarser-scale 
roughness dominates the lesser scale. 

Nevertheless, we want to investigate what happens when primary ripple is 
stripped away and all that is left is small-scale roughness. Microripple is often 
blamed for low contrast. Can this mysterious roughness scale be responsible for 
so many optical worries? 

13.4.1     The Aberration Function of Small-Scale Roughness 
The fractal algorithm was not used in the microripple model, because we 

want to remove medium-scale features and concentrate on small-scale effects 
alone. A pseudo-random number generator was used to assign heights to the 
128×128 pupil grid. Because asymmetry was expected, tending toward flat tops 
with sharper grooves, a square root was taken of this starting surface, and the 
result was normalized. The surface is shown in Fig. 13-6. 

 

Fig. 13-6. A modeled microripple surface with amplitude expanded greatly. 

13.4.2    Filtering of Small-Scale Roughness 
Consider what was said above concerning correlation length. Because the 

microripple has a very tiny correlation length (less than a millimeter or so), we 
should expect a precipitous drop in the modulation transfer function, followed 
by a constant degradation. These effects are illustrated in Fig. 13-7. MTF drops 
quickly and then remains a more or less constant fraction of the perfect value. 

In fact, microripple as large as α/ιο wavelength RMS is an unlikely event, 
even though it appears on the graph. It is shown only to make the fast initial 
drop more apparent. Texereau gave a worst-case amount of only 1/100 
wavelength.   We can see by the behavior of the MTF graphs that 
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Filtering of very small scale 
roughness (i.e., microrippie) 

 
0.0 0.2 0.4 0.6 0.8 1.0 

Fraction of maximum spatial frequency 
Fig. 13-7. Various MTF curves characteristic of microrippie. The aberrations appearing here are 
exaggerated to show the shape. 

1/100 wavelength of microrippie would be indistinguishable from a perfect 
aperture in most dark-field observing situations. Calculated images differed 
little from perfection, so no star test diagrams of microrippie appear here. 

13.4.3     The Great Unknown 
So why do we hear all sorts of warnings about the debilitating effects of 

microrippie? Microrippie is one of those myths of telescope making that feeds 
on folk wisdom and hearsay. Part of the trouble is the difficulty of measuring it. 
Texereau describes a technique (originated by Lyot) that requires an attenuating 
phase plate, a specialized device that delays and weakens the propagation of the 
unscattered wavefront. Since the strength of microrippie cannot be measured 
easily, it gets the blame for any unidentified optical difficulty. 

Also, published descriptions of the construction of unusual instruments such 
as coronagraphs (where microrippie does matter) tend to frighten readers. 
People believe that microrippie may affect more prosaic forms of ordinary 
observing. The light diffracted from a slightly turned far edge is vastly stronger 
than that coming from microrippie. Nearly every telescope with an unmasked 
edge has much more diffuse light than the scattering caused by the microrippie 
roughness. 

Extended objects suffer far greater degradation from obstructions like spider 
vanes, mirror clips, and tiny screws projecting from the side of the secondary 
holder than from microrippie. For example, spiders deflect more 
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light than any likely case of small-scale roughness. A spider with 4 vanes 0.5 
mm thick on a 200-mm aperture diffracts 0.5% of the incident energy, slightly 
more than Texereau's 1/100-wavelength worst case microripple. 

A root-mean-square microripple error of 0.5 nm (about 1/1000-wavelength) 
results in a Strehl-ratio decrease of 0.00004. If this missing light is distributed 
over the field of interest, it results in a signal-to-noise ratio on extended objects 
that can be as bad as 44 dB. This value is between the 30 dB maximum defined 
in Chapter 9 for dirty optics and the 55 dB SNR of good magnetic tape. 

For most dark-field observing, however, microripple is not very harmful. For 
example, 1 mm width-scale roughness scatters light into a halo about 100 
arcseconds wide. Maybe 10% of that energy will cover a 20-arcsecond image of 
Mars. The rest of the stray light is beyond the planet's limb where it doesn't 
contaminate the image. Thus, the SNR improves to 54 dB, a very large value 
indeed. An analogy to a 50 dB signal-to-noise ratio is the darkening of the image 
of the Sun as viewed through a safe solar filter. If the signal were the unfiltered 
solar image, the noise caused by 1/1000-wavelength microripple would be about 
as strong as the filtered Sun. If you require an instrument capable of discerning 
dim details next to a bright source of interference, you may well need to worry 
about microripple. Small-scale, low-amplitude roughness is not a threat for most 
observers. 

 
Fig. 13-8. A testing technique originated by Lyot reveals microripple and veins of differing hardness 
on the glass. (From How to Make a Telescope by Jean Texereau, Copyright ©1984 by Willmann-
Bell, Inc. and used with permission.) 



Chapter 14 

Astigmatism 

Astigmatism is the tendency of an objective to focus at two distances. Each 
focal position is stretched, one at a right angle to the other. An average focus is 
found between them, with the image forming a crosslike pattern. Because of the 
stretching at the angles of the cross, as well as the inability to locate a unique 
focus, contrast of high-spatial frequency information is sharply lessened. This 
chapter will discuss a number of points: 

1. Astigmatism has many separate causes, and most can be cured at 
moderate or no expense. 

2. Unambiguously locating the source of astigmatism takes careful logic 
(and to be honest, a small amount of luck). 

3. Small amounts of astigmatism are detected by gently rocking the focus 
about the position of best focus. 

4. The way to determine whether the telescope has too much astigmatism is to 
try to detect non-circularity of the image at a calibrated 
focus setting. 

14.1     Astigmatism in Eyes and Telescope Optics 

Astigmatism means not stigmatic, or not focusing to a spot. In the widest 
possible definition, all of the nonsymmetric aberrations discussed in this book 
are astigmatic. The symmetric aberrations may produce fuzzy spots, but at least 
they are round. 

This type of aberration was originally defined by Ludwig von Seidel and 
modified by Fritz Zernike (Born and Wolf 1980, p. 470). Astigmatism 
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divides focus into two stubby lines separated by a short distance along the 
direction of eyepiece travel. The lines are at right angles to one another. A sort of 
"best focus" is seen at the halfway point between them, where the illumination 
pattern takes the shape of a cross. 

Astigmatism is frequently corrected in human vision.1 The cylinder numbers 
in the eyeglass prescription are adjustments for astigmatism. This aberration is 
usually caused by a deformation of the cornea, or the transparent outer covering 
of the eye. Astigmatism could result from a tighter "stretch" of the cornea in one 
direction than in the other, as well as a misshapen eyeball. The aberration can be 
temporarily corrected in some cases by pulling one corner of the eyelid. 

For example, my right eye has a cylinder power of 2 diopters2 at an axis of 
90° and my left eye has a power of 2.5 diopters at 88°. Because I also have 
significant focusing correction, I see point sources stretched up in one eye and 
flattened in the other. The approximate 90° axis is probably no accident; the 
stretch direction may be related to the muscle attachment points of my eye or to 
the shape of the orbital cavities in my head. 

The simplest example of an astigmatic lens is a cylinder with no curvature in 
one direction and significant curvature in the other. Truncated chords of 
cylinders are often used in reading magnifiers. By putting the magnifier right 
against the page, one can suppress the poor focusing properties of the lens and 
stretch tiny letters in one direction. 

Truly cylindrical lenses or mirrors are almost never used on purpose and 
never happen accidentally. The most common form is a hybrid of spherical and 
cylindrical shapes. In fact, one can subtract the spherical focusing power of a 
lens entirely and be left with a purely astigmatic form. 

A cylindrical lens that won't focus in any axis is modeled as part of a torus. A 
torus is shaped like a doughnut. The particular form that is most interesting here 
has a hole in it with exactly the same diameter as the torus' cross section. A 
drawing of such a doughnut appears in Fig. 14-1, with half of the torus chopped 
away to reveal the interesting region. Consider the tiny circle drawn on the inside 
of the hole. When lifted away from the rest of the torus, that circular piece has 
the same surface shape of an astigmatic lens with no focusing power (the other 
side of the lens is flat). The curve goes into the paper along the up-down 
direction and out of the paper to the left or right.   Imagine looking down on a 
saddle shape, 

______________________________ 
1 A more common problem fixed in eyeglasses are the spherical corrections, which are 

modifications of the focusing power of the eyes. "Spherical" to an optometrist refers to the A2ρ2 
focusing term of the expansion of Eq. 10.2. The words "spherical aberration correction" used by 
telescope makers designates the A4ρ4 term of that expansion. 

2 A diopter is the reciprocal of the focal length in meters. The typical 2-meter focal length of a 
small telescope produces a focusing power of only 0.5 diopters. 
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Fig. 14-1. A tiny circle on the inside of a torus is the purest form of the astigmatic deformation. 

with the left-right directions toward the pommel and seat, and up-down toward 
either stirrup. 

Astigmatic surfaces can be modeled as combinations of purely spherical (i.e., 
focusing) surfaces and nonfocusing toroidal surfaces. If we move the tiny circle 
of Fig. 14-1 to the outside of the doughnut, its surface no longer resembles a 
saddle. Instead, it looks like one of these hybrid surfaces. It has lower astigmatic 
power than before, with some spherical curvature mixed in. In the astigmatism 
of a real lens, the converging wavefront doesn't truly have a saddle shape. The 
shape is produced only after the spherical focusing component is subtracted 
away. 

14.2    Causes of Astigmatism 

Astigmatism in telescopes is a symptom of several optical problems, some of 
which are listed here: 

1. Misalignment (often mixed with coma). 
2. Poor support of the optics' weight, causing pressure directed along 

an axis (the "potato chip" sag). 
3. A supposedly flat  diagonal or right-angle  prism that  is  actually 

slightly spherical (a surprisingly common problem). 
4. A slight cylindrical deformation ground or polished into the glass (a 

very tiny amount is found in most mirrors and lenses). 
5. Poorly annealed glass (often appears in "porthole" mirrors or other 

thick pieces that were made with another application in mind). 
6. Uncompensated astigmatism in the observer's eye. 
The most disastrous of these causes are number 4, true astigmatism ground or 

polished into the surface, and number 5, unrelieved stresses contained in the 
glass itself.  Saving money by using undocumented glass for 
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the mirror substrate is a risk that many makers are willing to accept, and they 
often get away with it. The astigmatism that is derived from the other sources, 
however, is no less objectionable. Luckily, these causes are easily repaired. 

In the days when all mirrors were small and thick compared with their 
diameter, astigmatism was comparatively rare. Even halfhearted adherence to the 
optical shop practice of rotating the tool with respect to the mirror usually kept 
astigmatism dormant. Only when stresses were frozen into the mirror disk itself 
(cause #5) did astigmatism appear.3 

Cause #4 is more common now that large, thin mirrors are being figured. 
Even careful opticians can polish cylindrical curves into such a flexible surface. 
If conditions that result in astigmatism appear, they are usually a function of how 
the mirror was supported during grinding or polishing and are therefore 
persistent. Astigmatism, if it appears at all in such mirrors, is usually severe. 

Discovering the cause of observed astigmatism to determine possible 
strategies for its elimination takes methodical but straightforward detective 
work. The process will be described in section 14.5. 

14.3     Aberration Function of Astigmatism 

The term added to the wavefront aberration function to account for 
astigmatism alone is (Born and Wolf 1980, p. 470) 

⎟
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Here           is the coefficient giving the amplitude of the astigmatism, ρ is the 
distance from the axis, and θ is the angle from the axis of astigmatism. The 
constant ½ subtracted from the cos2 θ term is the needed focus shift to produce a 
Zernike best-focus aberration. Below, the astigmatism axis is conveniently 
placed at 0°, but it can occur at any angle.            is graphed in Fig. 14-2. 

astigA2

For example, if         is ¼  wavelength, then           goes from +1/8 
wavelength to — 1/8 wavelength. This definition is slightly different from the 
usual one for primary astigmatism. Coefficient           is the total peak-to-valley 
aberration and is the number that compares most closely with the Rayleigh 
tolerance. 

astigW

__________________________________ 
3 If disk itself was at fault, Russell Porter gave a succinct, though final, solution: "Seek out a 

good hard, solid hydrant. Hurl the mirror as fiercely as possible at said hydrant. Walk home."  
(Ingalls 1976). 
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Fig. 14-2. The saddle-shaped aberration function of astigmatism just after it has passed through the 
aperture. 

Eq. 14.1 has two interesting features. The first is the way the astigmatism 
scales with distance from the axis. It has the same power, ρ2, as defocusing 
aberration, so one may interpret astigmatism as a pathological form of 
defocusing. Also, at a defocusing aberration of A2 = ±(1/2)       , the aberration 
becomes flat along one line, with the line for the "+" value oriented at right 
angles to the line for the "—" value. This fact demonstrates that an optimum 
focal point exists for each axis of the mirror and that these optimum foci are on 
either side of conventional focus. The actual best focus position is a compromise 
between these axes. 

astigA2

The division of focal regions is best seen in Fig. 14-3, where the same 
longitudinal slice through focus is viewed first from the side and then from the 
top. The views are mirror opposites of one another. The approximate lines of 
brightest focus are the three-lobed wing structures, only one of which appears in 
each diagram. The little bright lozenge that appears fore or aft of the wing is just 
the other wing viewed end-on. If these slices could be perceived in three 
dimensions, one would see a pair of illuminated regions vaguely resembling 
boomerangs at right angles to each other, overlapping nose-to-nose. 

As the astigmatism gets worse, the bright region looks less like a wing and 
more like a long bar. The two bars separate and move apart. In the diagram, the 
bright regions separate and become more like lines. 

The best focus diffraction pattern pinches the rings into two bars for small 
aberrations (see Fig. 14-4). For larger amounts (many wavelengths) of 
astigmatism, best focus (if any focus could be called "best") resembles a square-
woven basket. At 1.5 wavelengths of aberration, an on-axis dip in intensity or a 
nodal minimum exists. By defocusing to ±0.75 wavelengths, we see the wings 
of Fig. 14-3 as they would appear face-on in 
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a) side view 15      b) top view 15 

 
Fig. 14-3. Two slice patterns depicting 1.5 wavelengths of astigmatism. The up-down dimension of 
each frame is 15 angle units (1.22 = Airy radius). Defocus is between -3 and 3 wavelengths. Best 
focus is at the center. 

inside focus best focus, AST=1.5 outside focus 15 

 
-0.75 0 0.75 

Fig. 14-4. Strong astigmatism (1.5 wavelengths total aberration): inside focus, best focus, outside 
focus. 

the eyepiece. 
Another interesting feature of Eq. 14.1 is that the toroidal shape is ap-

proximated by a parabolic radial dependence. Like spherical aberration, there are 
higher order terms to this expansion as well, but they are customarily ignored. 

14.4     Filtering of Astigmatism 

Since astigmatism is not circularly symmetric, the transfer function depends 
on how the MTF bar target is oriented. Hence, Fig. 14-5 shows each 
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Filtration caused by astigmatism

Fig. 14-5. Modulation transfer functions for astigmatism at best focus. Three amounts are shown: 3/8 
wavelength, 3/4 wavelength, 1.5 wavelengths. An aberration of 3/8 wavelength is just outside the 
Maréchal limit (0.8 Strehl ratio). In each pair, the lower curve is for MTF bars oriented along the 
axes of astigmatism. The higher curve is for bars at 45°. 

aberration amount as two lines, with all intermediate MTF curves approximately between 
them. Clearly, astigmatism is profoundly harmful at 1.5 wavelengths. The 0.8 Strehl ratio 
occurs at a little less than 3/8 wavelength peak-to-valley. 

Because it affects the aperture on the same scale as defocusing, astigmatism is 
primarily an intermediate-to-high spatial frequency error. It affects the transfer of 
contrast only mildly at low spatial frequencies. The transfer function of astigmatism 
doesn't fall as quickly with increased spatial frequency as the MTF for primary spherical 
aberration or obstruction. Look at its performance at middle spatial frequency, however. 
The lowest curve even for the marginally acceptable 3/8-wavelength range degrades the 
MTF to an average of 70% the perfect value. 

The degradation bottoms out on the lower curve of the 3/4-wavelength MTF at about 
0.5 of the maximum spatial frequency. For a 200-mm aperture, details with spacing of 
about 1.2 arcseconds and less would be the most severely damaged. Because it attacks 
high spatial frequencies, astigmatism reserves its worst behavior for lunar-planetary 
observation. This aberration may partially account for the poor reputation of thin-mirror 
Newtonians for high-magnification observation. 
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14.5 Star-Test Patterns 

Star-test focus runs appear in the next two figures. The aberration amount in 
Fig. 14-6 is 3/4 wavelength. It is shown as it would appear with 20% obstruction. 
Figure 14-7 shows effects of 3/8 wavelength of unobstructed astigmatism. The 
signature of astigmatism is the oppositely directed oval appearance on either side 
of focus. Recall that these patterns are calculated with an astigmatism axis 
aligned with the square. In real observing, astigmatism is not required to sit 
upright. It can be seen at any angle. As defocus is increased, the pattern becomes 
less elliptical. Defocusing is kept small in these figures because astigmatism 
most severely affects high spatial frequencies and is most readily detected close 
to focus. 

In fact, the most useful method to detect astigmatism is to focus a dimmer 
star and then rock the eyepiece back and forth across focus. The astigmatism 
stretches the image first one way and then the other, and the aberration is 
immediately apparent. A focused image is supposed to appear as a cross, but you 
may have trouble seeing the diffraction disk at all in the telescopes for which 
astigmatism is likely. More common are apertures that just show a hint of the 
pattern, as in Fig. 14-7. 

If ellipticity is seen, turn to Table 5-1 and determine how far you must move 
the eyepiece to defocus 4 wavelengths. For a focal ratio of f/6, the amount is 
only 0.025 inches or 0.63 mm. Defocus this far and carefully inspect the image 
of a dim star. If the pattern is distinctly elliptical, the telescope has too much 
astigmatism. Ideally, astigmatism is difficult to detect at 2 wavelengths defocus. 

However, do not be surprised if most telescopes suffer from a trace amount 
of this aberration, if only because of the ever-present force of gravity. Few 
instruments have none. 

14.6 Identification in Newtonian Reflectors 

Just because the instrument suffers from astigmatism doesn't necessarily 
mean that the problem is ground into the glass. Finding astigmatic error is easy; 
identifying its source is more difficult. 

First of all, determine if your own eye is causing the astigmatism. Simply 
using your other eye to look through the telescope often does not help (see my 
prescription above), so that's not the way to tell. You can try rotating your head 
with respect to the eyepiece and see if the astigmatic axis follows, but changes 
caused by such slight rotations are difficult to perceive. 
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ASTIG=0.75 OB=20%        10 normal OB=20% 10 

 
Fig. 14-6. Focus run of ¾-wavelength astigmatism. The normal aperture is in the right column. 
Obstruction is 20%. Ellipticity is still clear at 8-wavelengths defocus. 
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Fig. 14-7. Unobstructed aperture with 3/8-wavelength total astigmatism. The right column depicts a 
perfect aperture. Stretching is visible at 4 wavelengths defocus, but is hard to see at 8 wavelengths. 
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The best way to determine if the problem is in your eye is to increase the 
magnification. You will make the astigmatism easier to see if it is contained in 
the telescope, and diminish its strength if it is contained in your eye. Few eyes 
are so bad that they will show strong astigmatism if the exit pupil of the 
telescope is set below 1 mm. The bundle of light exiting the telescope decreases 
in cross-sectional area with higher power, and the illuminated area of misshapen 
cornea is reduced significantly. As the exit pupil approaches a pinhole, your eyes 
perform better. 

At this point, spin the eyepiece. The astigmatism axis should remain fixed. If 
it follows the rotation, the eyepiece is astigmatic. 

The next thing to investigate is the angle along which astigmatism seems to 
compress or stretch the image. In refractors or Schmidt-Cassegrains, the angle is 
obvious. For Newtonians, you can perform the same trick used in the alignment 
chapter. By defocusing a long way and poking your hand halfway into the 
optical path, you can determine the direction of stretching. Be suspicious of the 
main mirror cell if the astigmatism axis is oriented along the horizon or 
elevation direction (that is, in the gravity axis). Suspect the diagonal cell or the 
diagonal itself if the astigmatism seems to be aligned with respect to the tube (in 
the diagonal-tilt axis). 

Unfortunately, these two situations sometimes occur together, especially for 
large altazimuth Newtonians with a level eyepiece. Therefore, we must change 
the deformation for one mirror or the other. The first thing to try (especially if 
you're doing a level-telescope artificial source test) is to point the telescope at a 
star near zenith and see if the astigmatism is still visible. If the main mirror is 
riding on a single edge point, this step will redistribute the weight of the mirror 
and hence its compression. Perhaps the pattern will still be bad, but at least it 
will be different. It might, for example, transform into a three-sided pattern. If 
the image is unaffected, shake the telescope slightly and try again. 

If no change is seen, main mirror warping may yet be the problem. In the 
case of a mirror glued into its cell, one adhesive pad may be unduly straining the 
mirror, and the tension might have little to do with the mirror's weight. 

The worst possibility is that the mirror actually has an anomalous curvature 
in the glass. To determine if that problem afflicts your telescope, try a 120° 
rotation of the mirror. Realign the telescope and test again on a star near zenith. 
The error should also rotate if it is contained in the mirror. 

The image rotates. Ask yourself if the mirror performed well in the past, and 
only recently has performed poorly. If so, the weight of evidence seems to 
indicate that the mounting has failed or the mirror has become chipped or 
cracked. 
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Disassemble the whole mirror cell, inspect the mirror, and carefully 
reassemble the cell. Make certain that the mirror is adequately held but is 
nowhere pinched. For mirrors glued to a flat metal plate, make certain that you 
do not overly tighten this plate into place. 

If the telescope is still astigmatic after these corrective measures or if it has 
always performed badly, then consider the possibility that the aberration is either 
ground into the glass or the mirror substrate material was poorly annealed. 

The image doesn't rotate. When a 120° rotation does not affect the axis of 
astigmatism, then your attention must turn to the diagonal. Again, ask yourself if 
it performed well up to a recent date, then suddenly turned bad. Or have images 
always been marginal, and you are just now investigating with the star-test 
techniques presented here? 

If the loss of quality has been abrupt, then the diagonal mounting is probably 
at fault. Take it out and look it over. Have you recently taken it apart for 
cleaning? Have you recently readjusted it? 

Many Newtonian diagonal holders use cotton wadding behind the diagonal. 
Often, too much cotton stuffs the holder and causes tension on the mirror. Use 
only enough cotton behind the diagonal to hold it into place. 

Some diagonal holders have a split-cylinder construction. During re-
assembly, carefully widen the slit enough to give the diagonal mirror room. 
Make sure that a screw is not protruding from the base to strike the mirror in its 
back side, and be certain that the tip of the diagonal does not touch the base. 

If all these mounting changes do not help, perhaps the diagonal has a 
spherical curvature polished into its surface. Because this sphere is at a 45° 
angle, the effect on the image turns to astigmatism. 

You can check this poor performance by removing the diagonal holder and 
rigging it on a separate support (a photographic tripod is ideal). First, perform a 
straight star test on an inexpensive 50 or 60 mm refractor using an artificial 
source. Verify that the image is nicely circular. These department-store refractors 
are often optically good, and one should be kept for this purpose even if it is 
never used for observing. Then, do the star test again, looking at approximately 
45° through the diagonal.4 If the diagonal has curvature, you will see that the 
refractor has developed a sudden case of astigmatism. 

You can also check the operation of star diagonals or right-angle prisms 
using this auxiliary telescope technique. You may rely on any mirror satisfying 
such a check because the test demands equal path length over the whole surface 
of the right-angle bend.  This condition is probably harsher 

_____________________________ 
4 Pointing this combination can be frustrating, but you will eventually succeed. 
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Fig. 14-8. A sensitive test of diagonal mirrors and star diagonals. 

than actual operation demands. In normal use the converging light cone leaves 
much of the surface dark, but during the test the whole path is equally lit. 

14.7    Refractors or Schmidt-Cassegrains 

Except for instructions concerning the diagonal, the comments and in-
structions dealing with Newtonian reflectors above are still useful. First, remove 
the right-angle prism or mirror if you are using one. Many (if not most) such 
devices have poor optical quality, and the problem may be cured by this simple 
expedient. 

If astigmatism is seen in a refractor, one possible cause is poor alignment. 
Enough surfaces are present in such telescopes that designers, if they so choose, 
can strip coma away from off-axis images. Only astigmatism is left. Try to 
realign using instructions in Chapter 6. 

The secondary is not strongly tilted in Cassegrain-style reflectors, as it was 
for the Newtonians described above. Thus, a spherical error in the secondary 
will not show itself as astigmatism. Astigmatism must come from misshapen or 
severely strained optics. One likely source is the secondary holder itself. Some 
secondary mirrors aren't sufficiently isolated from the adjustment plate at their 
bases. Distortions in that plate can be transmitted to the mirror and show up as 
astigmatism (or worse) in the image. 

The secondary mirror of a Schmidt-Cassegrain adjusts by the turning of set 
screws with a hex-head wrench.  Because of the mechanical advantage 



264 Chapter 14.   Astigmatism 

of such a tool, you can unknowingly put huge tensions (500 pounds or more) on 
the secondary cell. The secondary is the only mirror to adjust in Schmidt-
Cassegrains, so if you can't eliminate astigmatism by reducing forces in the 
secondary holder, you must return the instrument to the maker for servicing. 

14.8     Remedies 

Nothing can be done about astigmatism in the glass except to refigure or 
replace the optics. Perhaps the maker will agree to refigure them for you, since 
the optics either left the factory with astigmatism or developed it later because of 
improperly annealed glass. 

Luckily, astigmatism is most often the result of improperly assembled mirror 
cells and secondary holders. Increasingly, mirrors are held in cells by the 
technique of gluing them to a plate instead of the more benign method of holding 
them loosely by clips. The thin plates buckle and transmit their warped shape to 
the optics through forces applied by the adhesive pad. 

We tend to judge everything by familiar uses, and in this case what we know 
is tightening bolts in, for example, an automobile. Everyday vibrations would 
quickly shake an automobile to pieces if the screws weren't tight. However, 
telescopes are delicate. The worst vibrations they are likely to encounter is a 
gentle, infrequent jiggling during transport. They don't turn at 2000 RPM like an 
internal combustion engine but shift position perhaps 40 times in a night. They 
are scientific instruments. Tighten screws firmly but gently. 



Chapter 15 

Accumulated Optical Problems 

15.1    Breaking the Camel's Back 

What you have been shown thus far is how the individual aberrations and 
transmission variations can affect the image. More important, however, is the 
way minor problems add up. "The wobbly stack" of Fig. 3-1 shows how many 
errors accumulate as a collection of filters. Even if each filter is relatively 
unimportant, the total filtration could render the image fuzzy and indistinct. 

The concept of modulation transfer outlined in Chapter 3 presented a single 
standard around which we could rally. By defining optical quality as the ability 
of the system to preserve contrast in an image, many disparate optical problems 
were compared on an equal footing. 

As each optical problem was discussed, it was assumed that the single error 
was the only difficulty. Of course, this is nonsense. Like wolves, optical 
problems travel in packs. The expression "maximum tolerable" was used in 
earlier chapters to indicate the worst amount of a single error that can be 
endured. Unfortunately, any further loss of imaging quality, whether it was 
derived from that particular error or not, causes the MTF curve to sag even 
lower. 

For an aperture troubled by acceptable amounts of several errors, let's 
calculate the ability to preserve contrast as each successive optical problem is 
piled on. This will show, as no individual aberration section could, the 
deterioration of optical quality as an accumulation of small weights. Eventually, 
the modulation transfer function collapses under the load. Ironically, we will see 
that the inadequacy of imaging performance in our example is not caused by any 
one error on the glass. Instead, poor imaging generally results from the summed 
effects of several errors, including poor telescope alignment and the unavoidable 
deterioration of atmospheric conditions. 
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The optical problems of Table 15-1 are sequentially added to a perfect 
aperture. The example pupil is not unusual and may even be considered better 
than normal. The total errors in the first column do not add up straightforwardly, 
so the root-mean-square deviation is shown as it accumulates in the last column. 
The amounts of cell pinching and misalignment seem excessive, but these errors 
do not compare well with the ¼-wavelength Rayleigh criterion. Because they are 
more limited in area than correction mistakes, they have to have a higher total 
value to result in the same degradation. All of these errors are about equally bad, 
and none would significantly damage optical quality by itself. 

Table 15-1 Aggregate errors in 
wavelengths  

Total Peak-to-valley Cumulative
of each error RMS error

25% Obstruction - - -
Undercorrection 0.20 0.20 0.054
Cell pinching 0.29 0.40 0.077
Misalignment 0.30 0.53 0.094
Turbulence 0.27 0.70 0.117

Note that this aperture is not affected by a turned edge, zones, astigmatism, 
or surface roughness. In fact, it would bench test very nicely, with only 1/5-
wavelength undercorrection error. Warping is an important aberration here, so 
we might think of this aperture as one of the thin-mirror Newtonians common 
today. The value of misalignment is consistent. These fast instruments are 
difficult to keep collimated and many of them routinely are used in a state of 
poor alignment. A misalignment aberration of 0.3 wavelengths, when appearing 
alone, still reduces the contrast less than ¼ wavelength of spherical aberration. 
The RMS deviation in the last column points out how some of the aberrations 
cancel others. For example, the misalignment appearing alone would affect the 
RMS deviation by a little less than 0.07 wavelengths. 

The stacked MTF curves appear in Fig. 15-1. Only one curve for each 
asymmetrical aberration is shown, all for the same orientation of the target bars. 
Each optical error degrades the image slightly, some seeming to be stronger at 
some spatial frequencies than others. In fact, the particular mix appearing in this 
example appears to be complementary. The spherical aberration wipes out 
contrast at lower spatial frequencies (around 0.2 maximum) while the 
misalignment acts more strongly at medium spatial frequencies (0.5 maximum). 
The boxes represent an otherwise perfect aperture that has a defocusing 
aberration of 0.4 wavelengths. This single aberration follows the lower-limit 
envelope fairly well. 

Surprisingly, this diagram represents the typical operating condition for a 
large astronomical telescope.   The choice of aberration amounts in 
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Fig. 15-1. Filtering of a realistic aperture. The curves show the filtration as the aberrations are 
successively added. 

the example has been especially generous to air turbulence. According to 
material presented earlier, the chosen amount of turbulence would rate a high 8 
to low 9 on Pickering's "seeing" scale. 

Star tests are shown in Fig. 15-2 as these optical problems added one-by-one. 
Each difficulty is not too much worse than the frame above, but the bottom row 
is considerably poorer than the first row. 

Peter Ceravolo has made a well-calibrated set of 6-inch (150-mm) f/8 mirrors 
having peak-to-valley correction errors of 1, 1/2, 1/4, and 1/10 wavelength. When 
he set them up side-by-side and had observers rate them, he noticed that people 
had no trouble telling the 1 and 1/2-wavelength correction errors from the better 
pair, but had a hard time distinguishing the 1/4-wavelength mirror and the nearly 
perfect one (Ceravolo et al. 1992). 

Based on the calculated example above, we can speculate on the reasons for 
this failure to discriminate a nearly perfect mirror from a barely acceptable one. 
Ceravolo's telescopes were probably less troubled by misalignment, pinched 
optics, or obstruction than by turbulence. Terence Dickinson rated seeing at 7 
out of 10 in one such session. When we consult the turbulence material in 
Chapter 7, we can estimate that a "seeing" of 7 induces an aberration somewhere 
near 0.10 wavelengths RMS. Recall that 1/4 wavelength of correction error is 
about 0.075 wavelengths RMS. The lack of a visible performance difference 
between the better mirrors could have occurred because the contrast degradation 
was dominated by the seeing. Not until the spherical aberration became big 
enough to compare to the turbulence-generated roughness was the difference 
easy to perceive. 
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Fig. 15-2. The images of the aberrations in Fig. 15-1 are shown as each additional difficulty is added. 
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Figure 15-3 shows focused examples of these correction errors with the 
turbulence aberration added (assuming no other aberrations contribute). A 20% 
obstruction is reasonable for a 150-mm f/8 Newtonian. 

Place this figure at some distance from your eyes and try to perceive the 
difference between 1/10-wavelength and 1/4-wavelength image frames. Keep in 
mind that the turbulence patterns continuously change. The modulation transfer 
curves appear in Fig. 15-4. Turbulence is sufficient to corrupt the excellent 
optics of the 1/10-wavelength mirror and it dominates the correction error of the 
1/4-wavelength mirror. Only the lower quality mirrors are so poor that spherical 
aberration overpowers turbulence. 

15.2    Fixing the Telescope 

In the absence of hard information, people tend to concentrate on one of the 
telescope's suspected optical difficulties and blame it for everything. Mirror-
making enthusiasts, for example, go to extraordinary lengths to figure ultra-
precise optical surfaces. They know optical fabrication, so they see all error in 
terms of improperly shaped surfaces. People who assemble their telescopes from 
prefabricated parts deal exclusively with telescope design. Some zealously 
reduce the size of the secondary obstruction. Others attempt to reduce the spider 
obstruction or at least mask it by bending the vanes. A few become specialists in 
the arcane tricks of baffling or try to seal the tubes of their reflectors with optical 
windows. Many suspect their telescope isn't adequately collimated and focus 
their primary attention on alignment. 

The lesson of Fig. 15-1 is that no optical problem is all-important nor can any 
problem be neglected entirely. Each difficulty deserves an appropriate response, 
with the important word being appropriate. Each suspected error deserves some 
attention, but no error must be emphasized to the exclusion of others. More to 
the point, no problem should be emphasized so much that its cure damages good 
operating characteristics of the telescope. 

Also, we must think about the type of observing as well as the errors. 
Specialized observing situations exist where a little spider diffraction, mi-
croripple, or a few flecks of dust make a difference. In other cases, they don't 
matter much at all. Deal only with real threats. 

If you mask your mirror to reduce a turned edge, be sure also to carefully 
baffle the instrument as well. After all, the image doesn't care about the source 
of the spurious light. One of the most neglected steps is a careful baffling of the 
final focuser tube, either by a series of shallow rings or by threading. (One 
clever manufacturer achieves this baffling by fitting a coiled 
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Fig. 15-3. A model of Ceravolo's four mirrors if they are used in the presence of atmospheric 
turbulence errors amounting to 0.1 wavelength RMS. Obstruction was arbitrarily chosen to be 20%. 
The aberrations caused by surface errors alone are in the left column. The other columns contain 
examples of fractally-derived turbulent wavefronts added to the correction errors. 
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Fraction of maximum spatial frequency 

Fig.  15-4.  The MTF curves of spherical aberration coupled with turbulence-induced roughness of 
0.1 wavelength RMS. 

spring inside the tube.) 
Pay attention to everything visible from the inside of the focuser. Can a 

bright star just out of the field of view contaminate the image with internal 
reflections? Is your Newtonian tube long enough to prevent distant street lights 
from adding glow to the image? 

If each of the degradations appearing in Fig. 15-1 is cut in half, you can 
derive an enormously improved image. Certainly, alignment tops the list of 
offenders, but if the telescope is aligned, consider the job only partly finished. 
Secondary size is important, but some of the small sizes suggested in the 
literature (10% to 15% of the aperture) can be too demanding. By reducing the 
secondary obstruction to 20% or below, you have climbed well up on the curve 
of diminishing returns. The important thing is that you have addressed each 
problem in turn. If each MTF degradation is boosted slightly, the net gain can be 
appreciable. 

A solution to a lower MTF that may not be obvious to some readers— and to 
others may seem like cheating—is to obtain a larger telescope. Recall that the 
maximum spatial frequency (in units of cycles/angle) is D/λ. Hence, if Fig. 15-1 
depicts the response of a 400 mm (16 inch) reflector, we can see that it delivers 
contrast about as well as a perfect unobstructed aperture one-third to half its size. 
That means it's behaving about as well as the finest 6-inch unobstructed 
telescope.1   In fact, a 16-inch reflector 

__________________________________ 
1 differences caused by the atmospheric turbulence scale, changes in eyepiece performance at 

lower focal ratios, and brighter images mean that performance won't be precisely duplicated. 
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possessing only those aberrations depicted in Fig. 15-1 would be judged an 
excellent telescope for its size. Therefore, if we are troubled by the performance 
of a small telescope, we can accept similar degradations in a larger aperture and 
still come out ahead (Zmek 1993). Using such a steamroller method to cure 
errors may not be subtle, but it's effective. Anything that results in a better image 
is legitimate. 

Many issues having nothing to do with design or optical quality affect the 
performance of the telescope. For example, ask yourself if you have properly 
dealt with obvious things like obtaining a smoothly operating focuser before you 
ever consider obscure items like minimizing obstruction. 

Some instruments are so shaky that one touch on the knob sends the image 
into wild gyrations. Such telescopes cannot be focused using common intuitive 
hand-eye coordination. Other telescopes are solid enough, but have focusers so 
tight and hard to turn that an observer is forced to wrestle with them. Some 
focusers are lubricated with a particularly heavy grease that stiffens in the cold. 

No amount of optical perfection can improve a telescope that cannot be 
focused. No matter how much you have reduced the obstruction, carefully 
aligned the optics, or baffled the tube, the image of a poorly focused instrument 
is still substandard. Figure 15-1 demonstrates this principle in a backhanded 
manner. The little boxes were intended to show how simple defocusing mimics 
the aggregate curve, but the implied message is that defocusing alone is enough 
to destroy the image. 

Telescopes are a mature technology. Severe modifications are probably 
mistakes. Yet a careful tweak here and there, as long as it's not excessive, can 
ensure that your telescope operates as well as it possibly can. It will probably 
even work better than you would have believed before you started. 

15.3     Errors on the Glass 

Errors polished into the glass are permanent. Things like spherical aberration, 
turned-down edge, or ground-in astigmatism cannot be adjusted out, nor can the 
user just wait, as in atmospheric or cooling effects. The telescope will never be 
able to perform adequately. 

Glass errors demand sober thought. Say you have inexpensively obtained a 
fast, thin-mirror altazimuth reflector, a "light bucket" having low to medium 
magnifications as the primary purpose. You cannot possibly expect crisp Airy 
disks and clearly defined diffraction rings. Few would want to pay for the 
optician's time needed to obtain such perfection in a large instrument, and few 
living under typical skies could often make use of such perfection. An optician 
cannot give an optical surface a great deal of singular attention without charging 
an enormous amount of money for the 
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service. The time required to figure mirrors to the diffraction limit increases 
explosively with aperture or low focal ratio. Large and fast mirrors have both in 
abundance. This large telescope will not give razor-sharp planetary views, but it 
should at least perform well on the objects it was meant to observe. 

If you have obtained a general-purpose telescope of moderate focal ratio and 
moderate aperture, however, you have a right to expect reasonable performance 
whenever seeing allows it. Before complaining to a manufacturer, star test the 
telescope again under different conditions. Make absolutely certain that the 
telescope is aligned and that the error doesn't originate with the eyepiece. 
Determine which optical component produced the error. If at all possible, try to 
see a star test on a good instrument before you judge a telescope as bad. Either 
stop down the offending instrument with an off-axis mask or perform the star 
test on a small or slow telescope likelier to give a nearly perfect result. Don't 
fully trust spherical aberration estimates gathered under rapidly changing 
temperature conditions. 

If, at the end of all these checks, you are still convinced that the telescope has 
unacceptable optics, contact the manufacturer. Don't waste time discussing your 
optical suspicions unless you are very sure. Telescope makers can draw on 
reserves of confusing jargon unavailable to you. Unless you are very 
knowledgeable, such terminology will soon have you gasping like a landed fish. 
In your complaint, merely indicate that the telescope is bad. Clearly and 
carefully explain that the instrument does not focus to a tight spot and say that 
you are not pleased with the product. 

Becoming angry in your dealings with makers serves no purpose and may be 
contrary to your interests. Always follow phone calls with written cor-
respondence. Few manufacturers knowingly offer poorly made telescopes. Most 
will work with you until you receive satisfaction. 

15.4    Testing Other Telescopes 

Once you become familiar with star testing, nothing prevents you from 
evaluating every instrument you come across. Such practice will help you to 
develop an eye for different aberrations. Sooner or later, an alert star tester will 
see every type of optical difficulty discussed in this book and some that are not 
discussed. You are encouraged in this effort to broaden your experience. 

Keep the test results to yourself, though. Considerations of courtesy aside, 
such opinions could be wrong. You generally know nothing of the history of the 
instrument. You don't know if it is cool or warm. You have not had a chance to 
align it first, so you need to mentally subtract a significant alignment error from 
the pattern.   Furthermore, one-shot tests 
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are anecdotal and do not allow for follow-up testing. Remember, you were told to 
test your own telescope again and again. What makes you think you can evaluate 
someone else's from a glance in the eyepiece? 

If you are asked for your opinion, give it along with a comment about the 
considerable uncertainties. Don't present the result as a pronouncement from 
heaven. Carefully explain how you developed the evaluation. If others don't 
know the star test, teach it to them. After all, I hope you realize by now that star 
testing is not that mysterious. 

15.5     When Everything Goes Right 

I don't want to leave you with a fatalistic interpretation of the star test. Once 
taught how to evaluate telescopes, people tend to be overly critical of their 
instruments. Nothing pleases them. It seems that the illusion of reality has been 
stripped away—and with it the wonder. 

Here is an example of this loss of illusion: Years ago, a universal flaw in old 
motion pictures was pointed out to me. Just before the end of a reel, markers in 
the form of punched holes appear twice as an aid to projectionists. If punched in 
the negative, the holes are inverted to dark spots. Because most films are 
compressed horizontally, these marks appear as flattened ovals, one at about 10 
seconds and another just before the reel changes. The second projector is always 
started at a point when the frame is dark or abruptly changes brightness. 

I had never seen this tiny flaw before and I never fail to see it now. I almost 
wish I had never been told. This place where the bones of the technology poke 
through invariably jolts me from the film's comforting illusion and reminds me 
that I am just watching a movie. 

Similarly, once optical phenomena are familiar, you will see them every-
where. Glasses wearers will be unable to walk in drizzle at night without 
noticing the interference bands in a refracted sparkle of light on the lenses. 
Looking upward into a clear blue sky, you will occasionally notice floaters in 
your eye surrounded by tiny diffraction rings. You'll see the ominous signature 
of chromatic aberration in every rainbow. 

I hope that you will not become unnaturally sensitive to the flaws in your 
telescope. I know individuals who own telescopes having abominable optics, yet 
they continually conduct productive and frequent observing sessions. I have 
known other owners who complained about telescopes that were little removed 
from perfection. They hardly ever spent time under the stars but were always 
adjusting and modifying their light-starved instruments. It seems that the attitude 
of the telescope user is the final filter in the wobbly stack and often becomes the 
worst form of degradation. The star test enables more realistic images. It is not 
meant to turn a happy observer 
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into a sad one or to spoil the glorious illusion that a telescope produces. 
Astronomical telescopes can weave delightful images, and I would serve 

readers badly if I were to leave them with a sense of disappointment to spoil the 
magic of starlight. I want to describe something I saw with my own eyes when 
everything went right—when much of the filtration dropped away and the optics 
were unimpeded. 

It was one of those rare times when the temperature had been virtually 
constant all day. One evening, my observing group set up a 16-inch f/5.6 
Newtonian telescope. It had a 3-inch thickness mirror that often had trouble 
cooling down, but that whole day it had been near ambient temperature. The 
evening was wonderfully steady. It was one of those infrequent nights when 
there seemed to be no upper limit to the useful magnification. We aligned the 
instrument and turned to Jupiter, then at about 45° elevation. 

The shadow of a moon was crossing Jupiter's disk. It stood out crisp and 
distinct against the planet's brilliance. The gray disk of the moon itself was 
clearly visible as it transited the planet. So many whorls and crenelations were 
visible on the surface, that neither hours of sketching nor my limited artistry 
could have captured them. I wasn't looking through a telescope so much as I was 
being projected beyond one. I had passed through the eyepiece. 

I have had similar experiences rarely but often enough to make it all 
worthwhile. Once I saw Cassini's division visible on the whole lit circle of 
Saturn's rings. The crepe ring was easily visible; it looked filmy against the 
darkness. Another time, at 350 power, I saw globular cluster M15 resolved clear 
across the core, each star visible as a tiny sparkle of light. 

I wonder how many of the billions of human beings who have ever walked 
the earth have seen these things. I feel fortunate and humbled to have done so 
myself. 

On these special nights, I did not see the telescope as a filter. I believed the 
image was real. And that is the point of all of this labor. We learn to judge the 
magnitude of optical errors to help the instrument fulfill its purpose. We do so 
for those brief moments when we can forget that we are looking through a 
telescope—when we can feel the quiet majesty of the sky. 



Appendix A 

Other Tests 

The 1930s were boom years for amateur telescope making in the United 
States, primarily through the popularization efforts of individuals such as 
Russell Porter and Albert Ingalls. Estimates have been made that up to 250,000 
telescopes were begun during the years before World War II. In a way, it was 
the only option. The Great Depression was raging, and established optical 
shops specialized in making expensive refractors or contracting for 
professional instruments. If you wanted a reasonably priced telescope in those 
times, you had to make it yourself. 

Soon, a few amateurs turned "pro," making instruments of the type other 
amateurs wanted and could afford to buy. Slowly, as number of such 
manufacturers increased, the character of amateur astronomy changed. No 
longer was grinding glass a rite of passage for entrance into the astronomical 
world. The advent of commercial Schmidt-Cassegrain catadioptric telescopes 
around 1970 completed the transformation. Telescopes are now consumer 
items. 

In the old days, nearly everyone had some familiarity (if not expertise) with 
the knife-edge test and a general acquaintance with the concepts behind testing 
during fabrication. Few modern amateur astronomers have been directly 
involved in making their own instruments. Amateurs have heard about shop 
tests but have only looked through testers at a convention display. Most 
amateur telescope makers today deal with the mechanical design and 
construction of their telescopes, not the optics. 

Thus, much of the material below will be new to many people. It may seem 
that I deal curtly and summarily with the various optical shop tests appearing 
here. This abruptness is not my intention. The tests below can be entertaining 
and give new insights into optical quality. Each one is so different from the 
rest that it offers a fresh perspective into the aberrations on the wavefront. 
Most of my criticisms are not about the tests themselves, 
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but their improper use. 
However, I do want to point out that these tests are not recommended if all 

you want to know is whether or not your telescope is a good one. They are all 
interesting, and some are phenomenally sensitive, but they aren't the most direct 
path to knowing if your telescope can work well. The star test is that path. 

For the purpose of completeness, these tests are described below, along with 
brief lists of difficulties for novices or unanticipated expenses. These reasons 
for not recommending them are varied, but most of them boil down to the 
following: 

1. Most of these tests are useful during optical fabrication of individual 
optical pieces, not evaluation of finished telescopes. 

2. Many of these tests involve the purchase or manufacture of accessory 
hardware, some of which can be very expensive. 

3. Often, they require complicated data reduction or difficult theoretical 
knowledge. 

4. Most are oriented toward one type of surface and require multiple tests 
or additional optics if they are to be applied to the whole instrument. 

Readers are encouraged to find out more about one or more of the following 
testing techniques. Each one of them could fill (and perhaps deserves) its own 
book, just as this one has been devoted to the star test. You can spend a lifetime 
discovering the details concerning any of them. 

A.1     The Foucault Test 

Jean Bernard Leon Foucault was an all-purpose scientist. He is best known 
for demonstrating the rotation of the earth by precession of the axis of a 
pendulum and measuring the speed of light. He also took the first daguerrotype 
photograph of sunspots, thus initiating astrophotography. Foucault made an 
early metal-on-glass telescope mirror. Finally, he invented a sensitive test of 
optics at their center of curvature. 

Imagine a reflective sphere 6 meters in diameter. Clearly, light radiating 
from a point at the center of that sphere and diverging outward would strike 
every portion of the sphere at the same time, ft would then reflect and converge 
to be perfectly imaged as a point on the source that emitted it originally. 

Although it would be a beautiful thing to behold, a reflective sphere 6 
meters in diameter has few uses.   If only one tiny portion of that sphere 



A.1.   The Foucault Test 279 

were silvered, the reflective part would be a weakly concave area. The non-
reflective portions could then be trimmed off. Let's say the remainder is a 10-
inch (250-mm) f/6 (1500-mm) mirror that we wish to test. 

Some method of reading the optical quality must be devised before it can be 
said that a true test is being done. The first problem is that a source of light at 
the center of the sphere, an illuminated pinhole for example, is imaged back on 
top of itself. The imaged light is unavailable to the optician. Foucault solved 
this problem by offsetting the source slightly. The image point in this case is 
found across the center of curvature at a distance about equal to the offset. As 
long as the distance between the pinhole and image is kept small, the test only 
is slightly affected by astigmatism. 

The second problem is coming up with a method of probing the image point 
for incorrect focusing. One could inspect it with an eyepiece and thus have a 
variant of the star test, but this method was already known at the time of 
Foucault. The pinhole inspection procedure does not readily yield numbers 
useful to plan the next polishing step. Inspection with an eyepiece also demands 
an extremely small source; in the 250-mm mirror above, the pinhole should be 
less than 16μm (0.0006 inches) across. This restriction was especially severe in 
Foucault's time because portable light sources were based on flame and were 
hence quite weak, diffuse, and difficult to focus on a pinhole. 

Foucault's clever solution was to introduce an occluding edge into the beam 
near the imaging point. This test goes by the popular name "Foucault's knife-
edge test" although the method does not depend on the sharpness of the blade. 
The knife is slowly introduced near focus. In the simplest configuration, the 
tester's eye is placed close to the knife and peers past it at the mirror. If the 
knife is between the mirror and the image point, the dark shadow of the knife 
appears to darken from the same side of the mirror as the knife. Outside focus, 
the darkness appears to cross the mirror from the reverse side. 

One need not use a pinhole source at all. A short slit can serve equally well 
as long as the knife is parallel to its image. This way, the illumination can be 
increased hundreds of times. 

The knife is moved toward and away from the mirror until focus is located. 
If the focused point is struck precisely, the shadow on the mirror does not 
exhibit the direction of knife motion. A knife setting for which non-directional 
behavior is found proves the mirror must be part of a sphere. It dims evenly 
before darkening entirely. The Foucault test of a spherical minor is a true null 
test—the reflection blanks out. See Fig. A-l. 

If any high or low places on the mirror exist, no mirror-knife separation can 
be found at which the mirror darkens uniformly. The test superficially 
resembles the shadows cast from a lamp shining from the side of the mirror 
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Fig. A-1. Two Foucault test setups, one is perfect and the other shows a slight hill in the mirror's 
profile (the aberration is exaggerated). 

opposite the knife. The hill acts as a protrusion on the apparently flat surface. 
One side is very bright, and the other side is very dark. The elevated region is 
shown perched on a neutral-gray plane. Of course, this side-lighting concept 
should be viewed as a convenient delusion. The "hills" cast no shadows, and the 
entire appearance of the display can be changed merely by moving the knife 
along the axis of the mirror. In the figure, you can pull the knife back until the 
center bump is uniformly gray and appears to be sitting in a huge cupped 
depression. 

Foucault's genius was that he did not rest once he found this sensitive test 
for spherical mirrors. He modified his new test to figure paraboloids used as the 
primary optical element of Newtonian telescopes. The problem with testing 
paraboloids at their "center of curvature" is that a parabola is not a circle and a 
single center of curvature is not defined on its surface. You can squint your eyes 
and convince yourself that the shallow dish is a sphere to first order, but a 
perfect paraboloid shouldn't null. 

The behavior of light rays near the center of curvature of a paraboloid can 
be straightforwardly calculated, however. They converge along the horn-shaped 
caustic defined by an overcorrected surface. The caustic is a region in which ray 
optics strictly breaks down, but for the purpose of the purely geometric 
Foucault test, one pretends that it does not. 
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Jean Texereau drew a very informative diagram of this behavior, which is 
reprinted in Fig. A-2 (Texereau 1984). The caustic appears best in the ray 
diagram at the bottom left, where part of it is blocked by the knife. The 
appearance of the Foucault test at various knife positions is depicted on the 
right side by stippled drawings. The length of this ray-crossing region (which 
appears as a black bar at the tip of the knife) is related to the correction of the 
mirror. For a sphere at its center of curvature the length, of course, is zero. For a 
paraboloid it is                                                                                                    

                                                                                                         (A.1)   R
DLA
4

2

=

where R is the approximate radius of curvature of the mirror and D is its 
diameter. LA means longitudinal aberration, the stretch of the black bar in the 
diagram. For a hyperboloid, LA is a larger number, and for a prolate spheroid it 
is smaller. 

If an optical worker measures the shift between situations A and C and keeps 
changing the shape of the mirror until that shift is at or a little less than D2 /4R, 
then the paraboloid is closely approximated. Before Foucault, mirror making 
had been the province of high art and not a small amount of guesswork. Mirror 
testing at the simplest level had been reduced to finding the appearance of the 
center zone (A) and the edge zone (C) and measuring the distance between 
them. (See Suiter 1988.) 

Examples of these situations photographed on a real mirror appear in  
Fig. A-3. You can also see a tiny central button zone. Because of its location in 
the shadow of the diagonal, it would not harm the images. 

The contours seemingly shown by the imaginary side lamp have apparent 
amplitudes of something like 3 to 6 mm for a 150-mm f/8 paraboloid. Since this 
paraboloid departs from a sphere by about 1/8 wavelength, we can calculate a 
synthetic magnification of errors that amounts to about 4 mm/0.00007 mm or 
60,000. 

This development, coupled with the technology for depositing metal films on 
glass, set the stage for the huge reflectors of the 20th century. Foucault is the 
godfather of the massive instruments we use today. 

Foucault's knife-edge test is sensitive and proven, but it is not recommended 
as a final evaluation, for several reasons: 

1. The test requires some practice. One must be skilled in setting up, 
aligning, and interpreting the Foucault test. 

2. It does not allow testing of the convex elements of compound optical 
systems without expensive additional hardware. Except for an auto- 
collimation test against a huge optical flat, one must disassemble the 
telescope and test individual pieces, some of which may not be easy 
to remove. 
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Fig. A-2. A drawing of three knife locations and the resulting appearance of a parabolic mirror in 
the Foucault test. From How to Make a Telescope by Jean Texereau, Copyright ©1984 by 
Willmann-Bell, Inc. 
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Fig. A-3. Photographs of the three cases of Fig. A-2 on a paraboloidal mirror. Bright streaks are 
spurious reflections of the slit. (Photographs by William Herbert of Columbus, Ohio.) 
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3. In its more sophisticated forms, it requires a tiresome and easily bungled 
mathematical reduction procedure. Computers can help with 
this calculation, but such computations can be mishandled at the 
input stage. 

4. It requires that an elaborate knife edge tester be constructed. Simpler 
testers could be made when people only tested long-focus Newtonian 
mirrors, but fast instruments give little room for error. Very good motion 
platforms—called kinematic stages—and compact source/knife 
assemblies must be built or purchased. 

Variants of the Foucault test include the caustic test and the wire test. All are 
more or less bothered by these same difficulties. 

One other use of the knife edge test would be applicable to all forms of 
optics if it were more convenient. Using a knife edge at the focus of a star 
recovers the conditions that led to the gray, flat appearance of a sphere at the 
center of curvature. This method is easiest for owners of an excellent clock drive 
and a heavy, unshakable mounting, because they can follow the brightest stars. 
Some sort of method for gradually introducing the knife into the focused beam is 
also necessary because this variant of the Foucault test is extremely touchy. 

Since few telescopes are likely to perfectly null, those wanting to use a 
knife-edge at focus should provide their testing setup with a method to measure 
the length of focus shift from a situation resembling A in Fig A-2 to situation C. 
In a typical test, this focus shift should be below 100 /μm (0.004 inch). Using the 
artificial star described in Chapter 5 eases the mounting, clock drive, and 
illumination problems, but some sort of measurement screw must still be placed 
on the focuser. 

A.2     The Hartmann Test 

This test, developed by J. Hartmann around the year 1900, is used most 
often to check the surface of very large observatory instruments. A screen is 
centered over the objective lens or mirror. Carefully sized and placed holes are 
cut into this screen. Then the telescope is pointed at a distant star or artificial 
source at the center of curvature. 

Two photographic plates are then exposed, one inside of focus and the other 
outside. After they are developed, they are carefully measured. If the test is 
successful, the images of the holes are identifiable, resolved, and not so large 
that their positions are uncertain. Two pictures aren't really necessary when the 
positions of the holes over the mirror are very accurately known, but caution 
dictates a second photograph. 
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Fig. A-4. Configuration of the Hartmann test. The rectangles represent photographic plates with the 
intersection of dot-pair lines hovering between them. The measurement coordinates are indicated on 
one plate. 

Finally, the corresponding dots in the two pictures are connected math-
ematically. Once the intersections of the dot pairs are known, they are entered 
into expressions that convert longitudinal aberrations to wavefront error, 
provided that the surface is deformed smoothly. See Fig. A-4 for a diagram 
depicting the manner in which the Hartmann test is used to measure aberration. 
A two-hole version of the Hartmann arrangement is occasionally used today as a 
focusing aid (Suiter 1987). 

This method is not recommended for first-time testers for the following 
reasons: 

1. These photographs are best taken on glass plates. The region of 
interest near focus is small and photographic film is flexible. Both 
plates and equipment to handle them are expensive. 

2. The two plates should be held precisely perpendicular to the optical 
axis and each other during exposure. 

3. The measurements of dot positions are typically made with a plate 
measuring engine, which looks like a microscope or a microfiche reader 
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on a milling-machine bed.    Although they are common enough in 
professional observatories, they are not available to the rest of us. 

4. The mathematical reductions are of about the same complexity as advanced 
versions of the Foucault test, but because of the number of connected dots, 
many more calculations must be done. This data analysis may be a very 
tiresome chore. (See Danjon and Couder 1935 for an early reduction 
procedure that led to the procedure appearing in Texereau 1984.) 

A.3     Resolution of Double Stars 

While determining the resolving power of a telescope is not a complete 
optical test, many people treat it as such. Thus, it deserves mention here. This 
method of evaluating telescope images became popular during the 19th century, 
when double stars were the subject of very active research. Observers who were 
primarily interested in the clean separation of two stars began to judge the 
performance of their telescopes entirely by this characteristic. 

Certainly, a telescope that fails to show double stars close to the expected 
resolution is displaying one of the symptoms of poor optics, but other types of 
equally bothersome optical difficulties do not betray themselves this way. 
Spherical aberration of 1/4 wavelength insignificantly damages the telescope's 
ability to split stars. (See the encircled energy plot in the chapter on spherical 
aberration.) However, on planetary detail requiring only moderate resolution, 
optics with correction errors present distinctly fuzzy images. 

Figure A-5a displays the various criteria of resolution. The first is called the 
Rayleigh criterion, which is not to be confused with the 1/4-wavelength Rayleigh 
limit of wavefront error. The Rayleigh resolution criterion is met when the 
separation of the two objects is precisely at the radius of the theoretical Airy 
disk. In other words, the second star is placed on the valley between the first 
star's central disk and the first diffraction ring. 

The degree to which the Rayleigh criterion divides the stars varies with 
details of the diffracting aperture. Different obstructions and aberrations result in 
differing depths of the "saddle" between the stars. For a perfect circular aperture 
with no obstruction and no aberrations, the dip between the stars is to about 70% 
of the brightest intensity. 

The second criterion was stated by double star observer W.R. Dawes in 1867 
(Sidgwick 1955). It applies only to unobstructed apertures dividing equal stars. 
In the Dawes criterion, the separation is a little less than 85% of the separation 
defined in the Rayleigh criterion. Fig. A-5a illustrates it 
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Fig. A-5. Resolution of equal brightness stars in two instruments: Top a) a perfect circular 
aperture; Bottom b) the same stars as seen in the same instrument with a 50% central 
obstruction. The huge secondary mirror actually improves resolution. 

as the intensity curve with the small intensity drop between the stars. This drop 
is only about V30 magnitude less than the maximum intensity. When doubles 
are this tight, their lack of roundness contributes as much or more to 
distinguishing duality than the intensity drop between them. 

The third and narrowest separation is called Sparrow's criterion, which is 
denned as that separation that results in a flat isthmus between the stars. 
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The Sparrow criterion is adjusted for obstructed and aberrated apertures until it 
always gives that flat region between the stars. Thus, it is always uniquely 
defined and always delivers the same behavior, but its exact separation varies 
with details of the aperture. 

Sparrow's criterion for unobstructed apertures has stars separated by about 
92% of Dawes' criterion or about 77% of Rayleigh's separation. In the perfect, 
unobstructed aperture's MTF chart of Fig. 3-6, the Sparrow criterion is found at a 
spatial frequency off the graph at 1.06Smax. This placement doesn't mean the 
resolution is illusory. Some double-star observers have approached or even 
exceeded this value. Stars are point objects, while the MTF target consists of 
bars. Points can be resolved by using the shape of the image as the only 
discriminator. 

Figure A-5b depicts one of the most disturbing aspects of using double stars 
as test objects. The summed diffraction patterns of two stars seen in a 50% 
obstructed aperture is calculated with the same stellar separations as were used 
in the unobstructed aperture of Fig. A-5a. For all three curves, equal separations 
deliver stronger dips in intensity between the stars. To recover the behaviors of 
Fig. A-5a, the stars must be pushed closer together. In short, the 50% obstructed 
aperture resolves better. 

Double-star resolution doesn't tell us much about other types of observing 
performance,1 particularly in that case where the 50% blocked aperture will fail 
badly. Planetary images are greatly degraded by such severe obstruction. 
Blocking the aperture kicks a large fraction of the light outside the central spot 
into distant portions of the point image. Resolution of a nearby star is little 
affected, because the star is close to the center of the image and the light 
diffracted by the obstruction is largely beyond it. 

If the desired object were a small, low-contrast crater on the Moon, the 
whole image is the sum of all light scattered from light patches around the crater 
as well as the image of the crater. Much of this spurious light is joined together 
to fog the interesting image. The scattering from any single diffuse spot is not 
enough to seriously damage the image by itself, but the combined effect of all of 
them worsens contrast considerably. 

Blocking the aperture by a 50% central obstruction helps some double stars 
resolve, but the same obstruction leads to severe image degradation of planetary 
detail. You can easily verify this result yourself. Look at the Moon or a planet 
some night with and without a large paper obstruction in front of the aperture. 
Unless the telescope's obstruction is high already, the artificially blocked 
aperture will appear much worse. 

Using the resolution of double stars as the sole criterion of optical quality, 
the astronomer is demanding that the judgement favor high spatial 

_______________________________ 
1 Dawes himself was well aware of this difficulty, even though his name is attached firmly to the 

misuse of this test as an indicator of optical quality. 
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frequencies. In the case of obstructed apertures, the spatial frequency response 
has been robbed of some of its intermediate frequency strength to achieve better 
contrast at higher frequencies. 

Double stars as test objects present other difficulties. Variability is associated 
with the sky and with the stars themselves. Ideally, one should use equal-
brightness white stars separated at the diffraction limit and demand that they be 
high in the sky. Few stars conveniently arrange themselves this way. Usually, 
the test must be done with unequal brightness stars separated by a distance close 
to your instrument's Dawes or Rayleigh criterion but not precisely at it. One of 
the stars may be tinged with blue or red, and they may be at a low altitude, 
which produces unfortunate atmospheric dispersion into rainbow-like spectra. 
"Seeing" will constrict the number of nights on which double star tests can be 
attempted, particularly for large instruments. 

Artificial double stars can be used to test resolution, but they cannot cure the 
basic inadequacies of the evaluation technique. Because very high magnification 
must be used, ground turbulence must be low. By bringing the source close to 
the telescope, one writer avoided the problem of turbulence. In this case, the 
source was only about 10 meters away (Maurer 1991). However, such a close 
distance makes such a test an unreliable check for aberrations (see Chapter 5). 

Atmospheric problems also trouble the star test, but because the stars are 
considered singly, you have more freedom to choose one at high altitude. Since 
the star test involves inspecting the much larger defocused stellar disk, it does 
not always require that seeing be perfect. 

For the above reasons, the double star resolution test is not recommended as 
an all-purpose test. In brief summation: 

1. Resolution tests are interesting to those who are concerned with double 
stars. Resolution is of little use as a general indicator of telescope 
performance because it favors high spatial frequencies. 

2. Suitable target stars are difficult to find. Artificial sources have their 
own pitfalls. 

3. Seeing must be superb before the double-star resolution test yields 
interesting results. 

A.4    Geometric Ronchi Test 

A test is attractive if it doesn't require a great deal of data reduction or 
interpretation. One such test involves placing a coarse periodic grating of dark 
and transparent bars near stellar focus of the instrument. An example frequency 
of such a grating is 100 lines/inch (4 lines/mm), with a 
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corresponding period of 0.01 inch (0.25 mm). This method was investigated by 
Vasco Ronchi around 1923 and thus carries the name the Ronchi test. 

Interpretation, at least when we assume that light is comprised of rays, is 
simple. Supposedly, light has originated from a point source very far away (like 
a star). If the star is correctly imaged, it should be focused to a single point. 
Starlight passes through a grid of straight, opaque bars, which remove the light 
rays that strike them. The perceived pattern on the mirror is just the shadows of 
those vertical bars. 

If the optics have aberrations associated with them, the light from different 
zonal radii is not diverted toward a single focus. In the case of spherical 
aberration, various axis crossing points are distributed near the region of the 
caustic. Because the grating lies at various distances from these points, the 
spacings of the grating projected on the aperture seem to vary from radius to 
radius. In the case of undercorrection, this effect is portrayed in Fig. A-6. 

 
Fig. A-6. A Ronchi ruling is placed near the focus of a star and examined without an eyepiece, a) If 
the rays are all directed to a common focus, the optics are perfect, b) If the lines distort, they 
indicate aberrations. The Ronchi grating need not be confined to the tiny circle. Any stripes outside 
the illuminated portion of the light cone do not contribute. 

If the grating is 100 lines/inch and the aperture has a focal ratio of f/8, the 
2.5 periods (or "lines") shown in the illuminated part of the grating would be 
about 0.2 inches inside focus and only 0.025 inches in diameter. 

It seems as if the Ronchi test is the final answer, a clear and unambiguous 
null test. Unfortunately, it doesn't always work that way. 
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A 10-inch f/6 mirror came to my attention in 1980. In spite of the fact that it 
gave soft images, it passed the Ronchi test using a grating of 100 lines/inch. It 
failed the star test in a stunning manner, however. When removed from the tube 
and tested with a more elaborate variation of the Foucault test, the mirror 
showed a ½-wavelength undercorrection. 

Still, it had passed the Ronchi test at focus. Something was wrong, either 
with one of the tests or the mirror. Consider the aberrated Ronchi drawing of 
Fig. A-6 again. The distortion of the pattern seen against the mirror is caused by 
the change in focus distance as measured from the grating. As depicted, the 
focus difference (or the longitudinal aberration) is about a third of the distance 
from the grating to the average point of focus, causing severely distorted Ronchi 
lines projected on the mirror. The density of lines at the center of the aperture is 
much higher than at the edge. One might call this curvature a "33% distortion." 
If the region of focus is a much smaller fraction of the distance to the grating, 
distortions can be appreciably lower. For optics of conventional focal ratios and 
diameters, this low-distortion condition is true much of the time. 

 
Fig. A-7. A similar-triangles setup used to estimate the Ronchi curvatures. The particular crossing 
points chosen here would be characteristic of overcorrection, but the derivation in the text would 
not be affected if they were reversed. 

One can easily calculate the length of the focus region for optics diverting 
light to the edge of the diffraction disk. If we draw the similar triangles of Fig. 
A-7, the outside triangle has edges of height D/2 (half the aperture) and base f. 
The triangle outside of focus has height d and base x, with d being the radius of 
the diffraction disk. The radius of the Airy disk is (1.22)(wavelength)(focal 
ratio), or 1.22λF. We can use similar triangles to show that x = 2.44λF2. 
Because we must regard a finite-sized region to estimate the number of lines 
showing, the density of lines at the edge 
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is compared with the density of lines at a point roughly halfway out the radius of 
the mirror. The dashed line, because it has only half the slope, can cross over at 
about twice the distance x from the point of focus.2 

If light from the edge is deflected to cross the axis at more than 3x from light 
at the 50%-radius zone, it begins to miss the diffraction disk entirely and signs 
of severe optical degradation become visible. 

The vertical dashed line depicts a grating located between the aperture and 
the region of focus. It has the same 2.5 lines as Fig. A-6, measured for the 
outside zone. Above the center, 1.25 lines are showing (a "line" is a complete 
on-off cycle, or a period). The height of this little triangle is therefore 1.25/N, 
where Ν is the number of lines per inch (or mm) of the grating. The base length 
of this triangle is left unknown and is called x'. The big triangle is the same as 
before. Using similar triangles again, one can show that x' = 2.5F/N. 

To calculate the distortion, we estimate the tolerable focus shift divided by 
the distance to the grating, or 
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Merely by identifying 2.5 as the number of lines of the grating that are 
intercepted (called n), 

                                                                                                   (A.3) 

 For f/6 optics with a 100 line/inch grating, taking as the wavelength the 
yellow-green color that the human eye likes best, the maximum tolerable 
distortion with 2.5 lines showing is about 0.04. 
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Anyone who has ever used one of these gratings knows that the sharpness of 
Fig. A-6 present an unrealistic view of what is happening. The actual shadows 
are fuzzy and indistinct. A 4% bowing of the lines in the presence of this 
fuzziness is nearly impossible to see. Figure A-8 depicts the actual pattern that 
results from a 1/4 wavelength of undercorrection, still without the blurring at the 
edges of the lines.3 

___________________________________________ 
2 The Airy disk in this diagram is greatly exaggerated in size. Hence, the crossing point of the 

dotted line appears nowhere near 2x from focus. However, in real situations with very small Airy 
disks, an inner crossing distance twice that of the edge is an excellent approximation. 

3 This pattern does not use the approximation in Eq. A.3 but is more accurately calculated using 
an adaptation of the method of Prugna (1991) to include correction error. 
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Fig. A-8. The Ronchi distortion expected of a ¼-wavelength undercorrected f/6 telescope when a 100 
line/inch grating is placed near focus and the telescope is directed toward a star. The thin exterior lines 
are the borders of the first- and second-order interference. 

An arbitrary cutoff can be imposed. This limit is somewhat artificial, but let's 
set it conservatively at 8%. If we can't set up a test with at least an 8% 
maximum bowing of the lines, we are not testing the optics with anything close 
to the kind of precision necessary. One suspects the actual cutoff should be 
higher, but for the purpose of argument, let's give the geometric Ronchi test the 
benefit of doubt. 

Examination of Eq. A.3 reveals how the Ronchi test could recover enough 
sensitivity to barely achieve the limit. If the grating were moved closer to focus, 
reducing the number of lines seen on the aperture to 1.25, this mirror will have 
lines that bow 8%. If the number of lines is increased to 200/inch, the pattern 
will also distort 8%. 

These solutions contain inherent problems. Although the geometric Ronchi 
test is derived with a ray approximation in mind, the real world doesn't care 
about the designer's thinking. It follows wave physics. Interference between the 
gaps on the grating result in superimposed offset artifacts called diffraction-
order images. These side images make the edges of the bars less certain, 
obscure behavior at the true edge, and generally muddle the view. They grow 
less important as fewer and fewer lines are strongly illuminated, but they can't 
be eliminated entirely because the outer portions of the image remain dimly lit. 

White-light diffraction expresses itself as a blur at the edge of the lines, so if 
a line is expanded by moving the grating closer (the first solution), the blur is 
increased as well. Increasing the frequency of the lines (the second solution) 
doubles the angles at which the higher-order images appear, making the edges 
even more difficult to see.   The brute force methods of 
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either moving the grating to show fewer lines or using a finer grating are limited 
in their ability to improve sensitivity. 

Again consulting Eq. A.3, distortion increases when testing optics of high 
focal ratio. At f/12, we have reached the 8% arbitrary limit with no other 
changes. The test has not suddenly become more sensitive, but the tolerances are 
wider with slow optics. For high focal ratios, the Ronchi test can indeed 
discriminate the difference between bad and good systems. 

An additional method doubles sensitivity. A Ronchi null test is conducted not 
on a distant star but a point source at the focus. Light exits the instrument in the 
reverse direction, bounces against a full-aperture optical flat, and travels back 
through the instrument in the reverse direction. It is intercepted near focus by a 
Ronchi grating. This autocollimation mode doubles the aberration because the 
optics have been traversed twice. A well-known Schmidt-Cassegrain 
manufacturer tests telescopes in this fashion. Because the aberrations are 
doubled, and the f/10 focal ratio is high to begin with, we can see that this 
manufacturer's test is an adequately sensitive one. The problem for ordinary 
individuals is the same as it is for all autocollimation tests—huge optical flats are 
expensive. 

What about a Ronchi test at the center of curvature? Several amateur authors 
have suggested that the geometric Ronchi test can be successful in a bench test of 
paraboloids at the center of curvature (Mobsby 1974; Terebizh 1990; Prugna 
1991 and Schultz 1980). The problem with most of these tests is that they never 
calculate the sensitivity of their methods. The way of properly showing 
sensitivity is to compute the shape of a pattern for both perfect optics and optics 
which display a ¼ wavelength of correction error. One must demonstrate that the 
two patterns are sufficiently different that a distinction can be made. 

In Fig. A-9, an example pattern of a perfect 16-inch f/4.5 mirror is calculated 
together with the pattern of the same mirror if it were a full l/2 wavelength 
undercorrected. Both are calculated as viewed in a 150 line/inch grating. The 
Ronchi screen is set at slightly different locations that present similar 
appearances near the mirror's center. One pattern is for a mirror better than any 
optical surface has ever been made. The other pattern is for a mirror of little or 
marginal usefulness in an astronomical instrument. Figure A-10 is a photograph 
of precisely this situation. The photograph shows, as no theoretical argument 
ever could, the difficulties of the geometric Ronchi test at the center of 
curvature. 

The problem with the Ronchi test conducted at the center of curvature is that 
it is swamped by the overcorrection of aspherical mirrors operated far from their 
natural focus at infinity. The Ronchi screen is so obviously responding to 
something that one forgets that the difference between the response to a bad 
mirror and a good mirror may be slight.   The under- 
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a) 1/2 wavelength undercorrected b) perfect 
Fig. A-9. Theoretical patterns are generated for a Ronchi ruling of 150 lines/inch placed slightly 
inside the center focus of a 16-inch f /4.5 mirror: a) if the mirror is ½ wavelength undercorrected; b) 
if the mirror is perfect. Distances: a) —0.06 inches and b) —0.05 inches. 

 
Fig. A-10. A photograph of a Ronchi test on a real mirror as calculated in Fig. A-9. Is the mirror 
perfect or terrible? The mirror was Foucault-tested and found to be l/8 wavelength undercorrected. 
The Foucault patterns appear in Fig. A-3. (Photograph by William Herbert.) 

corrected prolate spheroid, the perfect paraboloid, and the overcorrected 
hyperboloid all look badly overcorrected at the center of curvature. All but the 
highest focal ratios show this condition. 

For the 16-inch f/4.5 mirror at the center of curvature, the length of the blurry 
focus region is about 0.444 inches (11.3 mm). That's what the 
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Ronchi screen is acting on. However, the length of that region is 0.428 inches if 
the mirror is undercorrected right at the 1/4-wavelength Rayleigh limit or 0.460 
inches if it is overcorrected. This difference of 0.016 inches is slight, only a tiny 
adjustment of those grossly distorted Ronchi patterns. 

Sensitivity could be recovered by using a kinematic measurement platform 
and matching a number of theoretical patterns, all the time being careful to 
record the longitudinal motion of the Ronchi screen (as in Prugna 1991). 
Unfortunately, the test is almost never undertaken in this manner, probably 
because it so closely resembles the Foucault test that the user was trying to avoid 
in the first place. 

Professional optical workers have dealt with the sensitivity of the Ronchi 
test. Cornejo and Malacara (1970) write: 

The Ronchi test is a very powerful test for spherical as well as 
aspherical mirrors. However, this test is of an accuracy limited by 
diffraction to a value such that the resulting surface can be used to 
form images, but not for wavefronts to be analyzed 
interferometrically. [Italics added.] 

In other words, the test can generate surfaces accurate enough for use in cameras 
or other coarse imaging devices but not surfaces that are so precise that they can 
be tested with an interferometer. Such accuracy is demanded in astronomical 
telescopes. 

Ronchi himself commented on the accuracy of the geometric test that carries 
his name (Ronchi 1964). In an excellent review article he says, 

As long as the grating employed had a very low frequency, like the 
ones that we had used at first and that had also been used by other 
authors treating the same argument, the geometric reasoning 
corresponded quite well with the results of the experiments and 
measurements; but at the same time the method did not lead to 
results as fine as desired. It was evident that in order to increase this 
sensitivity it would be necessary to use gratings of the highest 
frequency possible, but then the results decidedly deviated from 
those predicted from geometrical reasoning. [Italics added.] 

Here Ronchi describes his justification for abandoning the geometric test in 
the 1920s. He goes on to describe the techniques to use the overlap between 
diffraction orders as an interferometric test. The evaluation is made by the 
complicated interpretation of two equally-aberrated wavefronts somewhat 
displaced from one another. In this true wave-optics Ronchi test, the separation 
of the shadows is not determined by geometry but by the interference of light. 
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The geometrical Ronchi test has some uses, however. It is an excellent way 
of seeing sharp zones. It can detect seriously defective optics— curvature at 
stellar focus is often enough to reject an instrument out of hand. It is a good way 
of testing camera optics or any optics used far from the diffraction limit. But this 
test has a variable sensitivity that has been unappreciated or ignored by many 
advocates. 

Readers may notice that if a checkerboard grid of squares replaced the 
Ronchi ruling, the Ronchi test would have a superficial resemblance to the 
Hartmann test. The corners of the squares would be equivalent to the hole 
positions. Yet no complaint was made about the Hartmann test's sensitivity. The 
critical difference is that the Hartmann screen is rigidly fixed on the aperture 
instead of floating somewhere near the focus. Plates are exposed and data are 
taken with high-precision measuring devices. Systematic errors are reduced by 
making plate measurements of dot positions from multiple directions. These raw 
measurements are followed by a sophisticated mathematical reduction 
procedure. 

Many amateurs, particularly those who promote the use of the geometric 
Ronchi test at the center of curvature for aspherical optics, present the test as the 
simple comparison of patterns. They have stripped the mathematics away, and 
with it goes the error-detection ability of the test. The siren song of the 
geometric Ronchi test is that people can just look at a pattern and avoid the 
difficulty of measurement. Unfortunately, the measurements contain the 
sensitivity. 

In summation, the geometric Ronchi test is not recommended for telescope 
evaluators for the following reasons: 

1. The sensitivity of the test is variable and depends on the focal ratio 
of the tested optical system and the frequency of the grating used. 
Also, results vary depending on whether the test is done at the focus 
or the center of curvature. Certain combinations are very sensitive; 
other combinations are fatally insensitive. 

2. When conducted at the center of curvature, the geometric Ronchi test 
is commonly used as a simple comparison of patterns, but the bending 
of such patterns can differ little from the patterns with unacceptable 
correction errors. 

3. It requires a sufficient acquaintance with the theory of the test so 
that a "worst case" unacceptable pattern can be calculated. Before 
declaring tested optics to have passed, one must have an appreciation 
of what failure looks like. A good place to start is to calculate the 
anticipated test pattern with and without 1/4 wavelength of low-order 
spherical aberration on the wavefront. 
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Α.5     Interferometry 

Many types of interferometers are used to test telescopes. Little purpose is 
served in dwelling on each of them here. Most of them require expensive 
auxiliary equipment, so the likelihood is small that one of these methods will be 
used by an individual who wants merely to test a single telescope. An example 
interferometer will serve to demonstrate the technique, a method that appears at 
first glance to require less equipment than most of the others. 

 
Fig. A-11. The principle of interference. 

Α.5.1     How Do Interferometers Work? 
Light is a wave, and two waves with the same frequency add together by 

summing amplitudes A and a. If the waves are moving in opposite directions, the 
result is a standing wave, like a guitar string. If the waves are moving in the 
same direction, the result is a wave that can have an amplitude as much as A + a 
or as little as A — a, depending on the respective phases. (See Fig. A-11.) This 
wave is the result of interference. 

One would seldom expect two waves to line up in direction well enough to 
see visible, reasonably stationary, interference effects in nature. Indeed, this 
effect is almost unknown using diffuse white-light sources. The exception can be 
found in the case of thin films. 

With thin films, an incident light beam is reflected twice in quick succession 
by two very nearly parallel surfaces. The most common way of achieving 
parallel surfaces in nature is with liquids. Thus, our first experience with thin-
film interference is usually found in the colors of a soap bubble. Thin-film 
interference also occurs in some insect wings, bird feathers, and mollusk shells. 
It even has a name that was coined before physical understanding was achieved, 
iridescence, after Iris, ancient goddess of the rainbow. 
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The color in a soap bubble is caused by the reflection from the outside of the 
bubble interfering with the reflection from the inside. (If you want to try an 
experiment, the colors are easier to see on a soap film still held in the loop.) The 
strength of the reflection from the air-to-soapy-water interface is about the same 
as the strength from the soapy-water-to-air interface, so the soap bubble 
interference should have high contrast. A color is favored at those frequencies 
for which one reflection is out of phase with the other by an even multiple of the 
color's wavelength. 

What happens to those colors for which the conditions aren't favorable? A 
wave contains energy, and that energy doesn't go away when the wave is 
canceled. If one path has been blocked, it goes in another direction. The light 
passes straight through. 

The reason we see colors at all is because soap bubbles are so thin. If the 
surfaces had two reflections with a phase delay amounting to 1000 wavelengths 
of blue light, it would be 999 wavelengths of not-so-blue light, 998 even-less-
blue, and so forth. So many frequencies would be favored that the reflected light 
would be colorless again. The spectral response would resemble a pocket comb, 
with many selected frequencies jutting up. However, our eyes are not sensitive to 
such fine structure and we would see only white light. 

We also don't see bubble colors in ordinary windows for the same reason. In 
fact, this color effect is only seen at a certain stage of the ephemeral life of a 
bubble. A fresh soap film is thick, so one sees many frequencies adding together 
to a rough approximation of white. As it evaporates, it passes through an 
iridescent stage where the colors depend on the local thickness. Stripes of red, 
yellow, green, blue, and purple appear briefly. Then comes a stage when all 
colors of reflection are equally discouraged. The bubble is colored a pale white 
or a white tinged with yellow once again. 

The bubble is still behaving as a barrier when it appears pale yellow, but soon 
it will get so thin that the wavelength of light is incapable of sensing the 
interface at all. If the bubble is long-lived, careful inspection will reveal an area 
of the film where it is actually invisible. The layer is so thin that it cannot 
materially impede the forward progress of the wave. 

If, instead of using white light, we illuminate a fresh film with one color 
only, what would we see? As the film dries up, it goes from invisible to visible 
at any given location, depending on whether that wavelength is favored to 
reflect. The bubble looks tattered and frayed depending on how fast it is drying 
at a certain location, and onlookers are able to tell it is still whole only by 
looking at the edges. 

The interference principles exemplified in a soap bubble can help us to 
understand how interferometers work. If we can generate one perfect wavefront, 
or at least a known wavefront, we can use it to interfere with 
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the unknown wavefront of our telescopes. If the wavefronts are identical, the 
interference will be the same over the whole aperture. 

A simple example is given to illustrate the ideas behind this principle. Let's 
say we wish to test a flat used for a diagonal mirror. We set it up in the 
configuration of Fig. A-12 with a known optical flat, illuminate it from above 
with fairly pure yellow-green light, and get far enough away in a vertical 
direction so that perspective does not cause any effects of its own.4 Here the thin 
film is not glass or soapy water, but the wedge of trapped air. 

If the diagonal is flat and the blocks (actually, thin strips of paper) are of the 
same thickness, one would detect a uniform brightness depending on the relative 
phases of the two reflections. Such precision is almost impossible to achieve by 
luck alone. More likely one will see, as in Fig. A-12a, a thin film of air 
amounting to Ν wavelengths on one side to Ν + n wavelengths on the other. If 
we follow the course of light as it passes through the glass and reflects off the 
two layers, we see that the two reflections have a phase difference of 2N 
wavelengths on the short side of the wedge and 27N + 2n wavelengths on the 
other side (to within a constant). One can subtract the 27N phase difference since 
it is the same over the whole piece and concentrate on the 2n. From the 
discussion with soap bubbles above, the expectation is that light stripes should 
appear at the locations where the interfering phases appear separated by 0, 1 
wave, 2 waves, etc. and dark bars should appear where the phases are separated 
by 1/2 wave, 3/2 wave, 5/2 wave, etc. Because the phase difference results from 
reflection, which doubles the distances light propagates, a bar occurs for every 
increase of a half wavelength in the separation of the plates. Furthermore, the 
bars should be straight, as in Fig. A-12b, because the separation varies only in 
the direction of offset. 

If the diagonal is not flat, however, the bars curve as in Fig. A-12c. We may 
easily view the dark bars (called "fringes") as contours of the tested piece 
separated by a half wavelength of light. By stretching a dark thread across the 
test setup, we can even estimate the amount of curvature. This case is out of line 
by not quite half a fringe so the tested piece is smoothly curved by a little less 
than 1/4 wavelength. 

This test can easily be generalized to other shapes. If the known surface is a 
convex paraboloid, a Newtonian telescope maker just needs to test and polish 
until the bars are straight. The truth is, no one works this way because all of the 
pieces made would need to have precisely the same focal 

________________________________ 

4 In practice, such a test is conducted with a mild condensing lens just above the two pieces 
(Fizeau's interferometer). Such an arrangement concentrates the returning light and rectifies the 
incident diffuse beam so that the optician can draw close. 
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Fig. A-12. Interference from a thin Rim of air is used to test the quality of a Bat surface. 

length (for no good reason). An optician needs a powerful incentive before 
incurring the expense of a curved testing piece. A camera manufacturer who may 
have a tight tolerance on thousands of spherical parts has a valid justification to 
make one. A telescope tester has easier roads to follow. 

Most easily interpreted interferometer tests have one feature in common. 
They always start with a single beam divided into two parts. One becomes the 
"reference" beam, and the other beam is transmitted through the optics. The 
reference wavefront must be conditioned into the same converging shape as it 
would attain had it passed through perfect optics. Finally, the beams must be 
brought together with only a few wavelengths of tilt. After all of these 
diversions, the two beams should have roughly the same amplitude in order to 
provide good contrast between the bright fringes and the dark ones. For example, 
if the lower surface were aluminized in the example above, the fringes would be 
very weak. One interfering beam would originate from the transparent glass 
(maybe 4% - 5% reflectivity) and the other would bounce strongly off the 
aluminum coating (92% reflectivity). The coating should be removed to use 
interferometry in this case. 

Another condition that must be maintained is approximately equal path 
length. The light source ultimately consists of a molecular or atomic transition, 
with a finite line width, implying through the Heisenberg indeterminacy 
principle, a localization of the light beam. A typical stream electromagnetic 
energy originating from a single transition is a wave packet about 
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0.5 m long. If the beam is split, half to enter a compact "perfect" conditioner 
(where it is immediately returned) and the other half continuing on to the optics, 
then these two path lengths must not differ by more than 0.5 m if the two beams 
are to successfully interfere. This situation is eased considerably by using a laser, 
which has a longer coherence length. 

A.5.2     The Point-Diffraction Interferometer 
An interferometric test generally requires extra equipment of the highest 

quality. However, an elegant solution was invented by R.N. Smartt and John 
Strong (1972) and announced by them at an Optical Society of America 
conference. This method requires the manufacture of a sophisticated mask, but 
presumably an isolated worker may still attempt the test because of its low cost. 
Telescope testing was reported by Smartt and W.H. Steel (1975), and the 
evaluation of unknown wavefronts has been mentioned by others (Alfred and 
Mills 1989; Mallick 1978). This technique has also appeared in popular literature 
(Delvo 1985). 

The aberrated beam of a telescope is imaged into a blurry spot bigger than 
the diffraction disk of a perfect aperture but still small enough to be close to the 
proper size. The aberration is preserved through the focus but only if the whole 
wavefront is allowed to contribute. If an opaque mask with a tiny hole is placed 
somewhere near the focus, the transmitted beam passing through that hole 
diverges spherically, no matter where the hole is located. That perfect wavefront 
occurs because individual portions of the wavefront are each behaving perfectly. 
The sum of all these spots at the plane of focus behaves imperfectly because they 
are mutually out of phase. Another way of thinking about it is to use a filtration 
argument. So much spatial information has been filtered out of the image passing 
through the tiny hole that the emerging signal can't help but be clean. 

As this tiny hole is increased in size, the wavefront produced by it remains 
approximately spherical until the hole is about the size of a perfect diffraction 
disk. Then, sensibly, it begins to degrade into the actual wave-front. 

This process is very interesting but is still of no help because nothing 
interferes with this perfect wavefront. If the mask is taken away, the original 
wavefront is present but no perfect wavefront exists with which it can interfere. 
If, however, the opaque mask is made slightly transparent, it is possible to cause 
the perfect wavefront escaping through the hole to interfere with the greatly 
diminished original wavefront. 

A point-diffraction interferometer is sketched in Fig. A-13. The original 



 
Α.5.   Interferometry 303 

 
Fig. A-13. The point-diffraction interferometer. 

wavefront and the wavefront escaping through the hole differ by the lined region. 
If a few visible fringes are desired, the hole must be offset until the sphere is 
tilted with respect to the darkened, complete wavefront by a few wavelengths. 
The hole is moved to the outer parts of the image, and the perfectly spherical 
wavefront emerging from this decentered hole becomes very dark. Transmission 
of the mask must be set low in order to obtain high-contrast fringes. 

The first disadvantage of this test is that most of the light is cut off. This 
problem can be overcome by darkening the room and allowing your eyes to 
adapt or by using long-exposure photography. The second difficulty involves 
mask making. The maximum radius of the hole is a fixed function of the focal 
ratio, d — 1.22λF, so that number is no problem. But the transmission of the 
mask must vary from 0.005 to 0.05 depending on the severity of the aberration 
and how much tilt is desired. 

Most users prefer to avoid cutting the hole. Instead, they make it part of the 
filtering operation. The filter can be made from a mostly exposed piece of fine-
grained photographic film. The holes are made by shading the film with tiny 
microspheres during the exposure step, as in Delvo's article, or these spheres can 
shade a glass slide during partial aluminizing. Smartt and Steel also describe an 
adjustable transmission mask comprised of two polarizing layers, one of which is 
punctured. To tune such a mask, they turn the unpierced polarizer until high-
contrast fringes are seen. This polarizer is immersed in a liquid having the same 
index of refraction as the mounting plastic of polarizing material. 



304 Appendix A.   Other Tests 

Although this test typically uses a laser and is performed in a bench-test 
autocollimation mode, the common-path arrangement does not demand the use 
of monochromatic light. Autocollimation is also not required. Smartt and Steel 
describe a test conducted at the focus of a large telescope on the image of a star. 
The test required excellent seeing, a stable mounting, and probably (although 
they didn't say) extraordinary patience. 

In Delvo's article, the difficulty of making these masks has been reduced. 
Drops of liquid mercury are smashed into a high-resolution photographic plate, 
covering it with tiny mercury spheres.5 Unfortunately, such clever fabrication 
methods can't cure the test's most severe problem, which is pinhole alignment. 
The mask must be placed to within a few dozen micrometers from the center of 
the pattern. A kinematic stage is required if the user wants to avoid excruciating 
effort, preferably a stage with three axes. 

To review, the difficulties of the point-diffraction interferometer test are as 
follows: 

1. This test image is very dim. 
2. The number of visible fringes and the contrast of the interference 

pattern are coupled together because the brightness of the spot drops 
away as it is decentered. 

3. Convenient operation requires an expensive kinematic stage. 
4. At the center of curvature, non-spherical mirror testing is difficult 

because the fringes are no longer straight. Test-reduction software is 
available, but its profitable use still demands great care and effort. 

5. The most convenient configuration requires a full-diameter 
autocollimation flat. 

A.6    The Null Test 

This test is actually a subset of many others. Briefly stated, a null test 
involves a testing configuration in which the perfect result is simple and requires 
no further reduction. Thus, the Foucault test is emphatically not a null test when 
a paraboloid is tested at the center of curvature, but a knife edge placed at the 
focus of a distant source or a star is a null test. If the optics are well figured, the 
whole surface will dim uniformly. Likewise, the point-diffraction interferometer 
used at the focus of a star is a null test. If the optics are perfect, the fringes are 
straight. The Ronchi test at the focus of a star behaves similarly; optics that pass 
the test show straight shadows of the bars on the aperture. If a full aperture 
autocollimation flat 

____________________________________ 
5 Mercury is toxic and exposure to it is cumulative. Be careful. 
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is used, many of the tests in this chapter become null tests. Even the star test 
qualifies. 

Here, the words "null test" are limited to mean those shop tests for which the 
spherical aberration of a properly figured surface is undone by putting the 
opposite spherical aberration in the beam emerging from the source. The Dall 
null test will be used as an example because it is common in the amateur 
literature, but there are many null testing devices, some superior to the Dall 
tester. 

The Dall null tester looks like a Foucault tester, except that the source 
pinhole is behind a small plano-convex lens. This lens puts an equal and 
opposite amount of spherical aberration onto the beam that would normally 
diverge spherically from the pinhole. A good paraboloidal mirror bends the 
wavefront back into a converging sphere. When the knife enters the image of the 
pinhole, it does not produce the distorted Foucault patterns of Figs. A-2 or A-3. 
It blanks out, just as if it were testing a sphere. 

Null testers are not inherently flawed, in spite of the poor reputation they 
received during the Hubble Space Telescope fiasco. However, many problems 
make the Dall null test difficult, including the following: 

1. The tester lens must be of impeccable quality. It must have a good 
edge and surface accuracy of approximately the precision that the 
tester hopes to find. A poor lens cannot be used to test a good 
mirror. 

2. The wavelength is no longer free; null testing should not be done in 
white light. Calculations of the proper pinhole-lens separation depend 
critically on the index of refraction of the lens and will be valid for 
one color only. To use this test, one must have full information on 
the refractive properties of the lens. A color filter should be placed 
between the lamp and the pinhole to restrict the bandwidth of the 
light employed. 

3. The lens-pinhole distance must be very precisely set or the test does 
not null for perfect optics but for overcorrected or uncorrected wave- 
fronts. (Testing on the Hubble telescope failed for a similar reason.) 

4. The axis of the pinhole-lens assembly must be very carefully aligned 
on the center of the mirror. 

5. The Dall null test has zonal spherical aberration that results in im 
proper curvature when fast mirrors are made to conform to the testing 
apparatus. It is not an accurate null (Buchroeder 1994). 



Appendix Β  

Calculation Methods 

To generate the photograph-like patterns, modulation transfer functions, and 
other miscellaneous graphs in this book, it was necessary to use the Huygens-
Fresnel principle in the context of Fourier optics. What follows is intended only 
as a sketch of the concepts used here. For more insight, consult the references 
mentioned below. The most readable is Joseph W. Goodman's Introduction to 
Fourier Optics (Goodman 1968) or Eugene Hecht's text Optics (Hecht 1987). 

APERTURE, one of the programs mentioned in this appendix, has been 
released as an optional software accompaniment to this volume. This program 
allows the calculation of the axially-symmetric patterns seen in the text, 
including spherical aberration, central obstruction, zones, turned edge, apodized 
apertures, and others. While this program is not necessary to appreciate the 
points made in earlier chapters, the realities of publishing limit the number of 
images that can appear here. APERTURE allows one the luxury of exploring 
the fine details of some of the most interesting diffraction behavior. 

B.1    Diffraction Concepts 

Chapter 4 presented a simplistic introduction to some of the ideas behind 
diffraction and the Huygens-Fresnel principle. For the purpose of discussion, we 
assumed every point on the wavefront re-radiates the wave. That convenient 
fiction has some difficulties, however. If each point is allowed to radiate in every 
direction equally, the aperture would arbitrarily reflect back into space some of 
the energy that reached it. 

Reflection at the aperture is not observed, nor is it seen at any point on the 
wavefront. Waves don't suddenly reverse direction unless they encounter a 
change in the medium.   The wave sum also doesn't deliver the 
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correct answer when integrated over a situation with no aperture, just a source of 
light and a receiver. The integral is over a complete sphere, and the radiators at 
right angles between the source and receiver have too strong a weight. 

Fresnel realized that these were impediments, so he made certain ap-
proximations. His model was not derived from first principles, which probably 
helps explain the intense scrutiny by such worthies as Poisson. In the early 19th 
century, even the physical process that produces light was not yet understood. 

Later research of Gustav Kirchhoff produced a version of the Huygens-
Fresnel theory derived from first principles. His result, called the Fresnel-
Kirchhoff diffraction formula, no longer requires that the rearward direction be 
ignored, though it demands a few conditions: 

1. Light is modeled as a scalar wave. Polarization is not included. The 
model is oblivious to the vector nature of light. 

2. The field values near the aperture are the same as they would be 
in the absence of the aperture (weighted by a simple trigonometric 
function). 

3. The distance from the aperture is sufficient to ensure that no bound 
or evanescent fields are present. 

One consequence of the second condition is the simultaneous specification of 
both the field values on the aperture in addition to their derivatives. The time-
harmonic form of the wave equation1 is a second-order differential equation for 
which the normal method of solution is to set either the value of the field on the 
boundaries or the derivative of that field. It is unusual that Kirchhoff gave both. 

With its overspecified boundaries, we must regard Kirchhoff's solution as an 
approximation. This approximation will not affect results if the aperture does not 
have a lot of structure. We may rightly suspect that the Fresnel-Kirchhoff 
equation will be less accurate for devices like high-resolution diffraction 
gratings. For gently sloped optics, with most of the area many wavelengths from 
all edges, the approximation does not cause much trouble. More detail 
concerning these criticisms is available in Baker and Copson (1950). 

A modified form of the Fresnel-Kirchhoff formula (using variables de- 
 
__________________________________ 

1 This formulation is called the Helmholtz equation. 
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Fig. B-l. Variables appearing in the Fresnel-Kirchhoff formula. The aperture is in surface A.

fined in Fig. B-1) is 
 
                                                                                                                         (B.1) 
Here, Ν is an arbitrary normalization and the time dependence has been 
suppressed. U(x',y') is the value of the field at the image location (x',y'). 
(Uniform transmission versions of the formula are derived in Hecht 1987, pp. 
461-462; Goodman 1968, pp. 37-41; Born and Wolf 1980, pp. 378-380.) The 
integral may be performed over the entire surface A, but the integrand is non-
zero only inside the aperture pupil. 
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complex number in circular notation. The transmission coefficient T(x, y) is its 
modulus2 and the function W(x,y) (in wavelengths) implies the phase. W(x,y) 
contains aberrations like turbulence, pinched optics, defocusing, astigmatism, etc. 
The cosine term in brackets is the inclination or obliquity factor. This function 
will eliminate nonphysical backward propagation. If we place the source far 
away, then θS is 0 and cosθS is 1. Set θr to 180°, as it would be for backward 
propagation, and the inclination factor vanishes. 

In writing Eq. B.l, another approximation has been implicitly made. The 
aberration function W(x,y) affects the angles in the inclination factor slightly, and 
the equation doesn't contain this effect anywhere. For all practical purposes, this 
change in angle is extremely small. Typically, the 

___________________________________ 
2 Modulus is the absolute value of a complex number. 



310 Appendix Β.   Calculation Methods 

worst wavefront tilts in this book are 30 wavelengths over 100 mm, or about 
0.01°. Equation B.l also contains an assumption of linearity. 

Key elements in the Fresnel-Kirchhoff formula are the two factors eikr/r and 
eiks/s (k = 2π/λ). Here, Huygens' principle of re-radiating elemental points is 
written in mathematical form. Each of these expressions is the time-independent 
part of a spherical wave function. The denominator will cause the intensity to 
obey the inverse square law of light (twice as far, one-fourth as bright). The 
numerator will ensure that the Fresnel zones will be properly painted on the 
aperture. The "$" spherical wave represents the propagation of the wave from the 
source to a point on the aperture. It is then reborn as the V spherical wave, which 
propagates to the receiving point. 

The intensity is related to the energy, so it cannot be complex-valued. It is 
calculated from the field above as follows: 

I(x',y') = U(x',y')U*(x',y') = |U(x',y')|2. (B.2) 

Once the integral has been performed over the whole open aperture, Eq. B.2 says 
that the intensity is known for only one point in the image space. To find it at any 
other location, we must change the values of x' and y' and evaluate the field 
integral again. To completely map out an entire image this way requires (to say 
the least) a great deal of time. 

Another name for the expression I(x',y') is the point-spread function, or PSF. 
The PSF determines how diffraction, obstructions, and aberrations degrade a 
perfectly sharp point source of light into a fuzzy disk. In the case of perfect 
optics filtered only by a finite circular aperture, the PSF follows the familiar Airy 
disk pattern. 

B.2     The Praunhofer and Fresnel Approximations 

We can simplify Eq. B.l by noticing some symmetries and by casting the 
problem in another coordinate system. First, we place the source at a distant on-
axis location so that s is a very large constant. Then we can pull the eiks/s wave 
function constant out of the integral and bury it in the normalization constant. 
Because we are using a focusing lens or mirror, we pretend the receiver point is 
also very distant by "unbending" the wave-front (Born and Wolf 1980, pp. 382-
386). In the Fraunhofer approximation (which is what this unbending is called), 
the important quantities are no longer the distances but the off-axis angles from 
the center of the aperture to the distant sensor. 

This approximation is written as (Hecht 1987, p. 494) 
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While not superficially looking much simpler than Eq. B.l, the Fraunhofer 
approximation has done away with those very messy distances r and s (or at least 
they are now neatly tucked away). The angle     is the angle to the image point in 
the x-direction, while     is the angle toward the image point in the y-direction. 
The second exponential in the integrand is just the phase difference induced by 
the tilt angle to the image location being calculated. This term does the same 
thing as picking up the corner of a table and asking how much higher the table is 
all along its surface. Over the leg still touching the floor, the extra height is zero. 
At the lifted corner, it has its full value. Everywhere over the aperture, this "tilt" 
aberration may be easily calculated. For all cases of interest here, sin

xφ
yφ

φ  is very 
close to φ , which makes it even simpler. 

In the Fraunhofer approximation, the inclination factor is ignored because of 
the very tiny deflections of the wavefront from its spherically converging path. 
N' is the new normalization constant. 

The Fraunhofer formula is not supposed to apply to non-zero values of 
defocusing aberration. However, the next term of the expansion of Eq. B.l used 
in deriving the Fraunhofer approximation is just this defocusing. Including this 
term changes the integral to the Fresnel approximation. However, an external 
defocusing cannot be imposed on the Fresnel approximation—that step would 
doubly count the defocusing. It is tidier to encapsulate all such terms into the 
pupil function, which is then applied to the skeletal Fraunhofer formula. 

The light touch of small amounts of defocusing can perhaps be gauged by the 
focus shift in Table 5-1 divided by the focal length of the instrument (which is 
the same as the fractional change in the sagitta of the wavefront). For example, at 
12 wavelengths defocusing aberration on an 8-inch (200-mm) f/6 telescope, Δf/f 
= 0.0016, a very tiny fraction. 

The star test of a focused aperture does not precisely reproduce at equal 
distances inside and outside of focus, but the difference is small. For example, a 
200-mm f/6 telescope defocused by 1.9 mm is listed in Table 5-1 as having a 
defocusing aberration of 12 wavelengths. A careful calculation shows that 1.9-
mm inside focus has a more precise aberration of 12.02 wavelengths. On the 
outside, an equal eyepiece motion becomes 11.98 wavelengths defocusing 
aberration. If we were to adjust the focuser until the aberration were precisely 12 
wavelengths, then the image inside focus would be ever-so-slightly smaller and 
brighter, and the image on the outside of focus would be incrementally bigger 
and dimmer.   Thus, the 
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effect is manifested as a magnification difference. Perhaps if we were to defocus 
very precisely with a measurement screw, we could barely detect such changes, 
but most star testers will never notice the difference. We must simply ensure that 
the fraction Δf/f is small (Bachynski and Bekefi 1957; Li 1982; Erkkila and 
Rogers 1981). 

B.3     Image Calculations for Symmetric Apertures 

Further simplification of the Fraunhofer approximation results if the pupil 
function is circularly symmetric. If the integral in Eq. B.2 is rewritten in circular 
coordinates, the angle integral can be performed to yield 
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where ρ is the normalized radial coordinate of the aperture, r' is the radial coordinate 
on the focal plane, Jo is the zeroth-order Bessel function, and N" is another 
normalization constant (Luneburg 1964, p. 345; Schroeder 1987, pp. 181-182). 

In this book, all circularly-symmetric images were calculated using this 
simplification. The particular algorithm used divided the radius into Np equally-
spaced points (typically 300-500) and calculated the intensity sum 
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Here the value φ is the reduced image angle Dθ/λ, where θ is the true angle, 
D is the diameter of the aperture, and λ is the wavelength. (This angle 
conveniently reaches the edge of the Airy disk for a uniform circular aperture at 
1.22.) Wd is the defocusing aberration A2(j/Nρ)2 (defined in Chapter 10) in 
wavelengths, and Wj contains the rest of the aberrations. Tj is just the 
transmission coefficient at a sampled radial point j. J0 is calculated using a 
subroutine adapted from Numerical Recipes (Press et al. 1986). 

It was straightforward also to keep track of the encircled energy of the image 
as φ was increased. Because Eq. B.5 is a radial sum, the intensity of the outer 
portions of the image had to be weighted for the increased perimeter. The 
normalized encircled energy increment is approximately 
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where Δφ is the jumpsize in image angle and єTR is the total energy fraction that 
enters the system. If the obstruction is 50%, єTR is 0.75, and the encircled energy 
increases enough so that it reaches unity far beyond the Airy disk. 

Actually, if the encircled energy is accumulated in the simple-minded manner 
of Eq. B.6, results are poor. The energy in focused images sharply increases just 
as the circle radius starts to open. Errors made here can be large. The program 
used Simpson's rule integration with a sophisticated starter. 

The modulation transfer function (MTF) was not calculated for circularly 
symmetric apertures in its more straightforward form as an autocorrelation (see 
below). Such a calculation is too slow. Instead, once Ι (φ) had been carried out 
far beyond the Airy disk, it could be used to infer the transfer function. The 
image is merely the convolution of a perfect sinusoidal target with the point 
spread function. For spatial frequency v, the integral is (as adapted from 
Schroeder 1987, p. 204) 
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A problem with this calculation is not apparent from casual inspection. The 
upper limit of the integral assumes that the intensity is known out to an 
arbitrarily high angle. We can calculate the intensity out to any angle, of course, 
but there must be energy beyond that angle that we know nothing about. High 
angles are represented by very low spatial frequencies. Thus, at first glance it 
would seem that this energy would be automatically taken into account by 
forcing the normalization M0 to be the integral evaluated at ν = 0. 

This approximation throws a wrench into the works. A modulation transfer 
function calculated this way does have the proper value (i.e., 1) at a spatial 
frequency of 0, but at higher spatial frequencies, the calculated transfer function 
is too high. The inescapable conclusion is that the truncation of the angle causes 
a numerically diminished MTF at low spatial frequencies. In other words, if we 
have not gathered that distant energy in our intensity calculation, we had better 
not take tally of it in Eq. B.7. Therefore, the computational algorithm is slightly 
modified: 
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Here MTF(0) is just the sum done for ν = 0, and m is the summation index. 

ΕΕ(φmax) is the fractional encircled energy as far as the point-spread function 
integral is done. Νφ is the number of angles in the intensity 
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summation. The effect on the MTF is to induce a small downward curl at low 
spatial frequencies. In most of the figures appearing in this book, the intensity 
function was carried out to angles where the lower part of the MTF could be 
approximated by a straight line to the known intercept of unity at the origin. 
Usually, the encircled energy at the most distant angle of a focused pattern 
exceeded 99%. 

B.4    Image Calculations for Nonsymmetric Apertures 

Although the field calculations of Eq. B.4 are long, they are a great deal 
shorter than the double integral required for a nonsymmetric pupil function. 
Others have noted that generating these patterns is tedious (Allred and Mills 
1989); before computer time became inexpensive, they were not often attempted 
at all. Each aperture is modeled by a square grid of 129 × 129 points, with points 
farther than 64 from the center set to zero. Within the aperture are 12,853 points. 
The image plane is a grid of 129 × 129 points as well. The integral in Eq. B.3 
must be done for each of these 16,641 image locations. For each nonsymmetric 
image frame in this book, the integrand of Eq. B.3 needed to be evaluated over 
210 million times. 

The image plane may be mapped out in one grand sweep using another 
technique. If a two-dimensional discrete Fourier transform were taken of the 
complex pupil function, the result would be (after rearrangement and further 
processing) a complete image. The fast Fourier transform (FFT) is useful to 
reduce the computational load (Brigham 1988). 

This procedure involves considerable computation itself. In this book the 
angle φ was sampled at Dθ/λ values as small as 0.05 or 0.1. To achieve a grid 
with such fine spacing, the pupil function array would have to be blank-padded 
(filled with zeroes) out to 1024 × 1024 or 2048 × 2048. The storage of just this 
single-precision array takes 8 to 32 megabytes. Much of the speed advantage of 
the FFT would be gobbled up by the relatively slow disk-access times to virtual 
memory (large RAM sizes were not common when this program was designed). 
One software company offered a two-dimensional FFT routine that could turn 
around a complex 1024 × 1024 array in a few minutes. However, this routine did 
not use the disk as virtual memory during the benchmark test; the array was held 
entirely in fast electronic memory. 

Once such an FFT is finished calculating, the array has to be reorganized and 
the image intensity extracted. All 8 megabytes need not be kept, but the 
additional processing to sample and compress the image would take more 
computer time. In the end, it was decided that the extra effort required to process 
the image by simple integration of Eq. B.3 was not a severe burden, and was 
more than compensated by the complete transparency of 
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the code. 
The algorithm that was used at the core of the program was a discrete version 

of Eqs. B.2 and B.3. It had the form 
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where Wd is the defocusing aberration, Wd = A2(t2 + u2)/642 and values Wt,u 
contain the rest of the aberrations. Ν here is the number of pupil points, i.e., 
12,853. This sum is done for each image point in a grid that runs indices m and n 
from —64 to 64. 

Asymmetric pupils have complex transfer functions. The full description of 
the performance of asymmetric apertures is called the optical transfer function 
(OTF) and has the following form: 

.)()( )(vievMTFvOTF Ψ=  (B.10) 

The imaginary exponent Ψ(v) is the phase transfer function. For small 
aberrations the real part of the OTF is much larger than the imaginary portion. 
Thus, phase is commonly neglected. The modulus MTF(v) is the quantity usually 
equated with the optical quality of the system. 

The effect of a small imaginary part of the OTF on the bar pattern image is to 
shift it sideways a tiny amount but not enough to reverse it completely. Reversal 
is adequately handled by a negative MTF.3 

Clearly, we cannot use the circularly symmetric formulation of Eq. B.7 to 
calculate the OTF of an asymmetric pupil. Instead, we may use a tidy 
formulation described well in a number of places (Born and Wolf 1980, p. 485; 
Parrent and Thompson 1969, p. 22; Luneburg 1964, p. 356). The OTF is 
calculated as the autocorrelation of the pupil function: 
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where the integral is taken over the aperture plane. Here Ρ is a shorthand notation 
for the pupil function defined in the text following Eq. B.l. The aperture 
coordinates are defined so that the perimeter is at x2 + y2 = 1, and the spatial 
frequency fractions are similarly normalized. One can envision the integral above 
as the overlap between the pupil function and the pupil function moved sideways 
by the spatial frequency fractions as in Fig. B-2. For non-aberrated pupils, the 
OTF is the dark area divided by the uncovered area of the whole aperture. 

______________________________________ 
3 The MTF as defined in Eq. B.10 is always positive, but the sign component of the phase transfer 

function is sometimes appended to the MTF when the OTF is mostly real. The resulting "MTF" is 
smoother and tells more about the optical performance. 
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Fig. B-2. The MTF as the overlap with a shifted pupil. 

The actual algorithm took into account the sampling of the aperture on a 
rectangular grid. Since the offsets have to land on sampled positions, the OTF 
was calculated only for integer offsets along the x and y directions and a 45° 
offset with equal shifts. The algorithm for a shift in only the x direction was 
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where indices s (for "shift"), u, s, and t run from —64 to 64 and vx = (s + 
64)/128. The maximum spatial frequency corresponds to vx = 1. Here the pupil 
array is measured from its center. 

Encircled energy can be defined for an asymmetric aperture, but no such 
calculations appear in this book. 

B.5     The Programs 

B.5.1     Symmetric Pupil Function 
If the pupil could be described in both amplitude and phase by a figure of 

revolution, diffraction patterns were calculated using the self-contained program 
APERTURE. This program allows the user to specify both the transmission and 
the aberration as a function of radius. After selecting a value of the defocusing 
aberration, APERTURE calculates the point spread function (PSF) and the 
encircled energy. Once the PSF has been calculated far enough away from the 
central diffraction disk, the modulation transfer function can be generated. 
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APERTURE is relatively fast. If the radius is divided into 300 sampled 
points, it can deliver the 200 calculations comprising a typical in-focus PSF in 
less than a minute using a 25 MHz 386/7. It then shows the image in shades of 
gray on a VGA screen. 

At this point another program, POSTDR, can be invoked. POSTDR trans-
lates the intensity file into a 128 × 128 halftone image using the PostScript™ 
page-description language. POSTDR allows one to adjust the contrast and 
brightness of the picture to fit within the limited dynamic range of printing 
paper. 

B.5.2     Asymmetric Pupil Function 
The structure of the program is divided into two tasks. The first program, 

PUPIL, generates a beginning pupil function. Typically, this pupil function file 
is calculated to represent a focused and unobstructed telescope. It also possesses 
a standard aberration value, such as 1 wavelength RMS. This file is then fed to 
the diffraction pattern program ASYMM. One applies additional obstruction and 
defocusing on the pupil function and an aberration multiplier as well. ASYMM 
then generates the image intensity file. 

Because ASYMM was designed to do the tedious direct integration of Eq. 
B.3, it was written with a 32-bit FORTRAN optimizing compiler and uses a 
DOS extender during execution. It runs in 9.6 hours on a 25 MHz 386/7 and 2.3 
hours on a 486DX50.4 

The modulation transfer function is calculated from the pupil function file 
using a separate routine named MTF. It generates a file with the OTF's of the 
three bar directions in sequence. The MTF is readily derived from these complex 
values. 

The longitudinal slice patterns through focus are calculated with a variation 
of ASYMM. 

B.6    Verification of Numerical Procedure 

As you may expect, the actual implementation of the algorithms is very 
messy compared to the sparse presentation above. Three methods were used to 
check that the coding was properly done: 

1. Checks between APERTURE and ASYMM for circularly-symmetric 
apertures, 

2. Comparison with an exact procedure, and 
3. Reproduction of complicated patterns appearing in literature. 
_________________________________ 
4 ASYMM is fragmented and requires a great deal of experience to execute reliably.   It would 

require a great deal of rewriting to be run by general users. It will not be released. 
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B.6.1     Comparison of APERTURE and ASYMM 
Two dissimilar procedures were used to generate diffraction patterns in the 

symmetric and asymmetric programs. Even though both programs have a 
pedigree that traces back to Eq. B.3, very little resemblance between them can be 
easily seen. They use different routines and are written in different languages. 
We can calculate the same situations using these two separate procedures and 
verify that the answers are indeed the same. 

Taking a circularly-symmetric pupil and cranking it through the slow, direct-
integration program ASYMM, one should obtain the same answer as 
APERTURE does. Tests were done for a number of pupils, and good com-
parisons resulted. Two such images appear in Fig. B-3; the point spread functions 
appear in Fig. B-4. 

The pictures are virtually identical except for a slight azimuthal structuring of 
the ASYMM output. A possible reason for this image difference is discussed 
below in section B.8. 

Had these programs generated markedly different patterns, we would not 
have known whether either was correct. But because two quite dissimilar 
routines generate the same answer, they are either coded correctly or an unlikely 
accident has occurred—an error that exhibits itself identically in both procedures. 
Lacking evidence to the contrary, we will assume that they are correct for now 
and proceed with other checks. 

This verification does not support the original theory contained in Eq. B.3. It 
merely says that the programs seem to be calculating Eq. B.3 correctly. A partial 
confirmation of the theory has been performed experimentally, but diffraction 
patterns from real apertures are exceedingly compact. Hence, their brightnesses 
are difficult to measure quantitatively (Taylor and Thompson 1958, Burch 1985). 

B.6.2     A Numerical Comparison with an Analytic Solution 
Any numerical procedure should reproduce the simple systems for which the 

answer is known analytically. Unfortunately, few diffraction problems have been 
solved in closed form. From our point of view, an analytic theory of a circular 
aperture containing at least one aberration would be acceptable. 

A solution to an otherwise perfect circular aperture with defocusing 
aberration appears in Chapter 8 of Born and Wolf. It involves what are called the 
Lommel functions to perform a version of the integral in Eq. B.4 
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ASYMM output 25      APERTURE output 25 

 
Fig. B-3. Comparison images of APERTURE and ASYMM on + ¼-wavelength spherical aberration 
of a 25% obstructed pupil. 

 
Fig. B-4. Point-spread functions that were used to generate the previous figure along one radius. 

(Born and Wolf 1980, pp. 438-439). Two solutions are each written as an infinite 
series having its own region of applicability, one inside geometric shadow and 
one outside of it. These series were programmed into a MathCad™ document 
and each was graphed in the region where it was supposed to work (not shown). 
Results were indistinguishable from the results of APERTURE. The tests went 
up to 12 wavelengths defocusing aber- 
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ration and were limited to Bessel functions up to order 80. 
Again this verification is reassuring, but incomplete. It tests the defocusing 

component of the aberration function (which appears in a separate term of both 
algorithms) but leaves the other aberrations alone. However, the central loops of 
ASYMM and APERTURE do not distinguish between defocusing and other 
aberrations. If a mistake were being made, it would have to be in the preparatory 
statements of both programs. Furthermore, any supposed error would have to 
leave the defocusing aberration untarnished in both procedures. 

B.6.3     Comparison with Published Patterns 
Perhaps the most severe test of the approximation here was the comparison 

of patterns generated by ASYMM with published contour plots for coma and 
astigmatism. The coma contour plots were figured analytically by R. Kingslake 
(1948), but they are most commonly available as reprinted in Born and Wolf (6th 
ed., 1980). The astigmatism contour plot was published by Nienhuis and Nijboer 
(1949). 

The expressions for aberration differ somewhat from the primary aberrations 
used to derive these contour plots, but if we trace through the details, we find that 
3.2 and 6.4 wavelengths of primary coma translate to 2.13 and 4.27 wavelengths 
of peak-to-valley coma aberration as defined at Zernike diffraction focus. In 
other words, coma as defined here is 2/3 the coefficient appearing in Born and 
Wolf. Likewise, the amount of astigmatism used there was 0.64 wavelengths, 
which translates to 1.28 wavelengths peak-to-valley astigmatism. The patterns as 
drawn by ASYMM appear in Fig. B-5. They match the overall shapes of the 
contour plots very well (axes were relabeled in Born and Wolf pp. 478, 480). 

B.7     Numerical Limitations on Programs 

Although APERTURE is also a numerical model, it is ASYMM which has 
the greatest opportunity to fail. Experience showed that the 129 points on the 
aperture's diameter had difficulty simulating defocusing aberration exceeding 10 
wavelengths. Along each diameter under such conditions, a minimum of about 5 
samples occur within a Fresnel zone. The errors have a chance to average to zero 
only because many such diameters are added together statistically. 

ASYMM simulates an aperture with an approximate circular pattern 64 
points in radius. These points are distributed in a rectangular pattern. The edge of 
such a sampled aperture is necessarily ragged. We can perhaps 



Β. 7.   Numerical Limitations on Programs 321 

 
Fig. B-5. Reproduction of coma and astigmatism image patterns. Left images are not at the same 
scale as the contour plots to the right. (Coma contours appear with permission of R. Kingslake and 
the astigmatism contour appears courtesy of Elsevier Science Publishing.) 

estimate how much error is induced by inspecting Fig. B-6, which shows the 
differences between APERTURE and ASYMM on a defocused unaberrated aperture 
expanded until the errors are obvious. Because APERTURE can be set to sum 
over a finer one-dimensional grid (here it is 500 points), it suf- 
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Fig. B-6. Limited sample-size errors in ASYMM. 

fers less corruption. The model has smooth edges in APERTURE because the 
angular integral is done analytically. 

The maximum difference is about 0.000075, or 1 part in 13,300. Thus, we are 
seeing less than 1 erroneous sample of the 12,853 points on the aperture 
contributing to the intensity. 

Think about the way those ragged edges are working for a moment. If the 
point is farther from the center than a radius of unity, the model ignores it. Each 
point represents a square area around its feet. Thus, if this little tile is more than 
halfway outside the radius, its contribution is neglected. If it extends less than 
halfway outside the boundary, its full contribution is counted, even for the area 
that stretches outside. A 1/13,000 error is a very small mistake and is perhaps better 
than the program deserves. One suspects that errors as large as 4 parts in 13,000 
appear occasionally. Such an error would be 0.0003 or —35 dB. Since this 
intensity is about that of an image defocused 9 wavelengths, we should anticipate 
that the accuracy beyond defocus values of 8 to 10 wavelengths is lessened. 

In practical use, ASYMM did not fail from rough pupil edges. Figure B-7 
shows a comparison between two perfect images, each defocused by 8 
wavelengths. One was produced with ASYMM and the other with APERTURE. 
They were both printed at extremely low contrast to show the feathery 
appearance induced by the coarse edges of the ASYMM pupil. This spurious 
detail was much dimmer than —35 dB. In all real cases, contrast was high 
enough so that such wrinkling was nearly invisible. 
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ASYMM output APERTURE output 40

Fig. B-7. Extremely low-contrast image patterns showing tiny errors in ASYMM calculation. 

The final problem with the sparsely sampled pupil of ASYMM is grating 
interference. If the phase shift between adjacent contributing elements is one 
wavelength, they once again act as if they are in phase. For our 128-point 
diameter pupil, this condition occurs at Dθ/λ = 128. 

This effect is an artifact of pretending that the wonderfully smooth surface 
could be represented by a 129 × 129 square grid of points. In FFT terminology, 
we can call such a phenomenon "aliasing." It is an effect of changing the 
continuous Fourier transform to a discretely sampled one. 

If we haven't defocused far enough to divert significant light to distant 
portions of the image space, no trouble results. In other words, the image and the 
twin image (way over at a reduced angle of 128) aren't interfering because they 
don't throw much light that far from their centers. Nevertheless, a limit exists as 
to how far the image can be defocused until interference becomes severe. We 
must know that limit so that it can be intelligently avoided. 

Figure B-8 shows the pattern out to Dθ/λ = 128 for three cases: de-focusing 
aberrations of 8, 12, and 16 wavelengths. Clearly, 16 wavelengths is too far, and 
12 is questionable because of dark gray tendrils between the images. Only the 
frame depicting 8 wavelengths seems to show the diffraction disks as truly 
isolated. 

We should only expect the images to be free of interference if we can fit a 
whole defocused disk into the darkness between the images. The geometric 
radius of an image in reduced angle is 4 times the number of wavelengths of 
defocus.    This result may be derived by considering Eq. 5.1, 
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Fig. B-8. Interference between side-order images in ASYMM. Note that the reduced angle is very large at 
128 

f-f' = 8F2Δnλ, 
where F is the focal ratio and Δn is the number of wavelengths of focusing 
difference. We can calculate the geometric radius of the image: 

 
 

                                                                                                                     (B.13)       
Since the radius of the Airy disk is 1.22Fλ, we can identify Fλ as the conversion 
factor from reduced angle to radius. Thus 4Δn is the value of the reduced angle at 
the edge of geometric shadow. In the present case, 8 wavelengths defocusing 
aberration means the geometric shadow starts at a reduced angle of 4 × 8 = 32, or 
26.2 times the radius of the Airy disk. 

Eight wavelengths should be barely enough to fit a whole disk between the 
disk and the interference order centered at a reduced angle of 128. A geometric 
radius would appear at the center and edge with a diameter in the middle: 32 + 64 
+ 32 = 128. Of course, the image appears to be somewhat smaller than the 
geometric radius. A whole disk would drop between the two with a tiny bit of 
rattle. 

Occasionally, ASYMM was asked to calculate an image 10 wavelengths out-
of-focus. Some interference from the side order was noticeable in a few cases, 
but the damage was not severe. 

All patterns with a defocusing aberration beyond 10 wavelengths were 
calculated only with the program APERTURE, which is far less sensitive to 
sampling error. 

B.8     Difficulties in Printing 

The dynamic range of book reproduction is not nearly the same as the 
dynamic range of the human eye.  When the eye receives the wrong light 
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level, it adjusts. Paper can't do that. The halftone process divides gray scales into 
dot patterns. An ideal dynamic range for such a process allows a gray scale with 
256 levels of intensity. 5 

Clearly, the most desirable way of proceeding would be to use an unchanging 
scale for the printing process. This procedure is impossible with only 256 levels. 
We saw above that much interesting detail appears with an intensity of 0.0001, 
particularly with large values of defocusing aberration. Thus, no uniform scale 
can cover both in-focus images (intensity =1) and defocused images (intensity 
≅  0.0001). We would need a gray scale with 10,000 intensity levels. Also, an 
image that is self-luminous and one that is reflective have subtle differences. 
Real stars are viewed in a dark field, with the eye's variable sensitivity tracking 
the lowered intensity of a defocused image. Images on paper must be lit by a 
lamp. When paper images get darker, the eye does not follow. The bright corners 
of the paper are still in the field of view, and the extra illumination subverts the 
tracking. 

Coupled with this problem are the non-linearities associated with printing. 
Often the dark end of the scale is darker than anticipated through the mechanism 
of ink spot spreading. The brightest parts of the image are too bright because 
very small isolated dots fail to pick up any ink at all. The net result is an increase 
in contrast and a decrease in dynamic range. 

We have no choice but to arbitrarily follow the decreased range of a roughly 
linear printing scale. In the images throughout this book, the brightness of the 
frame varies considerably. Focused images are compact; they seem to be drawn 
with just a spot of white coloring. On the other hand, defocused images are 
rendered much brighter than they actually appear when viewed through the 
telescope. Both contrast and brightness are under subjective control. 

When you look at any image in this book, concentrate on the shape rather 
than the absolute brightness. The illumination of such an image is the least 
significant (and most deceptive) of its properties. 

 
 
 
 
 
 
 
 
 
 
 
_________________________________ 
5 300 dots-per-inch laser printers theoretically are limited to 30 distinct shadings if they use a 

1/56-inch halftone grid. Most achieve half that in practice. 



Appendix C 

Minor Axis and Offset Derivation 

Ralph Dakin published exact expressions for minor axis and offset in Sky and 
Telescope years ago, but these expressions are arranged for convenience of 
calculation rather than exposition. Hence, the equations are a little mysterious and 
subject to error when published in secondary sources. This situation was not 
helped by an unfortunate typographical error in the original article. The mistake 
was corrected a few months later, but the repair was often missed and incorrect 
expressions progressed further in amateur literature (Dakin 1962, erratum 1963). 

These quantities are not difficult to derive, and something can be learned 
from seeing the analytic geometry logic, so they are derived anew here. The 
formulas that follow are superficially different than Dakin's expressions, but they 
produce the same answers. The differences probably are caused by the way the 
coordinate systems are set up. Such modifications often lead to ostensibly 
different formulas. 

C.1     Derivation 

Figure C-1 displays an "unfolded" Newtonian and defines various quantities 
useful in this derivation. These variables are f, the focal length; D, the diameter 
of the mirror; s, the sagitta (or depth) of the mirror; T, the distance from the focal 
plane to the center of the tube; and L, the diameter of the fully-illuminated region 
at the focal plane. In this derivation, I will determine the values of the minor 
(short) axis of the diagonal and the sideways or down offset of its center. The 
coordinate system is defined with its origin at the center of the focal plane. The 
x-axis extends through the center of the mirror, and the y-axis extends laterally 
away from the optical axis. 
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Fig. C-l. The coordinate system and quantities of interest in sizing and properly placing the 
Newtonian diagonal. 

Three lines of Fig. C-1 are significant. Lines #1 and #3 follow the edges of 
the fully-illuminated field to the edges of the mirror. Line #2 is directed along the 
surface of the diagonal. We know it is at 45° and therefore strikes the two axes at 
the indicated points having coordinates (0,T) and (T,0). Similarly, we know the 
coordinates of two points along each of the lines #1 and #3, and we can use this 
knowledge to obtain the defining equation of those lines as well. 

Once the equations of the lines are known, the points of intersection at the far 
edges of the diagonal can be calculated. These intersections have coordinates 
(xa,ya) and (xb,yb). These points are all that are required to derive both the minor 
axis and the offset. The minor axis is 

                                      MA= ya - yb ,                                        (C.1) 
  and the offset is 

                                                                                                                    (C.2) .xxTOffset ba +=
Lines have the general form y = mx + b, where b is the y-intercept and m is the 

slope. Line #2 is the easiest to determine, and by inspection one 
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can assign it the equation 
y2 = - x2 + T. (C.3) 

Line #1 has a y-intercept of L/2, and the slope can be obtained by inserting 
the known coordinates of the point at the upper corner of the mirror: 
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Similarly, the equation of line #3 becomes 
                                                                                                                (C.5) 

                                                                                                             

We can rename the quantity (D — L)/2(f — s) ≡ n. All three equations can be 
summarized as 
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By setting y1 = y2, we can determine the coordinate xa as 
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and we insert that expression back into the line #2 equation to derive ya: 
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Similarly, the coordinates of the other intersection point are 
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The expression for the minor axis (Eq. C.1) is just the difference between the 
two y-values: 
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The offset (Eq. C.2) is only a little more complicated: 
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The final expressions of Eqs. C.10 and C.11 are exact. They only require an 
expression for the sagitta. A parabola of focus f is determined by the equation     
x = f - (y2/4f), and the exact sagitta is obtained by evaluating the shift in x on axis 
and at the y-value of the edge, D/2: 

                                                                                                              (C.12)                      
f

Ds
16

2
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Please note that Eq. C.12 is not the same as the wavefront sagitta that will be 
calculated in Appendix E, but the surface sagitta, which is half as large. 

C.2    Test Case 

Before proceeding further, it would be prudent to check these expressions 
against Dakin's results. One such calculation appears in Appendix G of Texereau 
(1984). With 

s =  0.0833333 inches,     
n = 0.0789913 inches,   
Τ = 6.3 inches, and        
L = 0.43 inches, 

one readily calculates (from Eq. C.10) that MA = 1.43423950 inches. This 
number compares well with the result of 1.43423955 using Dakin's formulas as 
reprinted in Texereau. Offset = 0.056646217 inches there, and 0.056646220 here. 
The slight differences are caused by numerical truncation error. (The calculations 
in Texereau were carried out to more decimal places for comparison.) 

C.3    Approximations 

The nearly exact expressions are not that difficult to evaluate with the 
common availability of calculators and computers. Spreadsheet programs are 
especially handy for calculations such as these, but some people may want the 
more compact form of an approximation. 

Notice that in Eqs. C.10 and C.11, the factor 1/(1 — n2) can be approximated 
by 1 + n2. With most mirrors, the quantity (D — L)/2(f — s) ≡ n is very close to 
(D — L)/2f. Capital F is the focal ratio, so 
 
                                                                                                                       (C.13) 

      
where the smallest terms have been ignored. 
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The same expansion could be done with the equation for MA, again ignoring 
exceptionally tiny terms, to obtain the answer 
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The test case above was recalculated with Eqs. C.13 and C.14 and the 
answers are MA = 1.424 inches and Offset = 0.057 inches, quite close to the 
exact numbers. Of course, with a very small, fully illuminated region of the focal 
plane, these values approach MA = T/F and Offset = T/4F2. 



Appendix D 

Labeling of Diffraction Patterns 

 
Fig. D-1. Image notation: a) labels used on diffraction patterns, b) labels used on longitudinal slice 
patterns. 

Figure D-1 a shows how the typical image pattern appearing in this book is 
labeled, and Fig. D-lb indicates the slight modifications to annotate slice patterns. 
In the upper left corner of any given pattern is a title, if one is present. In the 
upper right corner of a frame is a number that gives the reduced angular radius 
Dθ/λ from the edge to the center of the square box. 
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In the case of the square diffraction pattern frame, this angle also applies to the horizontal 
axis. If the pattern had the number 1.22 here, the Airy disk of a focused perfect aperture 
would just be contained within the box (see Fig. D-2). Most of the focused patterns in the 
text have limits of 5 or 10, allowing us to inspect the ring structure as well as the central 
spot. Out-of-focus patterns are viewed at lower magnification, which accounts for the 
large numbers appearing in the upper right corners. 

perfect 1.22 

 
Fig. D-2. A. perfect Airy disk is barely contained within a box with a reduced angular dimension 
1.22 from center to edge. The bright corners are the first diffraction ring. 

The centered number at the bottom of one of the square patterns is the 
number of wavelengths of defocusing aberration. The numbers at the lower 
corners of a slice pattern denote the value of defocus at each end of the box, with 
the defocus changing steadily between them. Longitudinal slice frames are 
defocused an equal distance inside and outside focus, with the best focus near 
the center. In all slice frames, the objective lens or mirror is to the left. 

In some cases, clutter is reduced by labeling only one frame in a row or 
column. If a defocus value is missing, the value appears at the bottom of the 
column. If the angular coordinate is missing on a particular frame, it can be 
found on a row entry on the far right. 

For composite figures with a focused image frame appearing to straddle two 
lower columns, the inside focus behavior is the column to the left (negative 
defocus values), while the outside focus behavior (positive) is in the middle 
column. Such figures have the behavior of perfect optics in the column to the far 
right. These unaberrated columns give only .one side of focus; the other side is 
identical. See Fig. B-3. 
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Fig. D-3. A focus-run pattern shows how the frames "fold over" the region of focus. The perfect 
pattern to the right need not show both inside- and outside-focus images because they are identical. 



Appendix Ε 

Eyepiece Travel and Defocusing 
Aberration 

This book uses the generic unit of defocusing aberration when referring to 
distance out of focus. However, the most convenient way of thinking about 
defocus is in terms of eyepiece travel. Here, we wish to determine the amount of 
difference between two spheres at the aperture, one centered on focus f and the 
other centered on a defocus position f'. We will then relate that very tiny distance 
at the aperture (the defocusing aberration) to the relatively large amount we have 
moved the eyepiece between f and f'. This situation is depicted in Fig. 4-9. 

The derivation proceeds from the difference between the two wavefront 
sagittae, or how much the wavefront is "cupped" at the aperture. Another 
common sagitta involves surface shape (or the shallow depth of the mirror 
itself). It is half the wavefront sagitta. Don't confuse surface sagitta with 
wavefront sagitta. 

 

Fig E-1.  Geometry of the sagittal relation.  Focal length f is the radius of curvature of the wavefront. 
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If the distance to a focus position is f and if D is the diameter of the aperture, 
then by the Pythagorean theorem, the sagitta s is 
                                                                                                                         (E.1) .
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If the focal length is much greater than the aperture diameter, this equation may 
be approximated by performing a Taylor expansion. Such an approximation 
results in 
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Next we demand that the quantity s — s'  be thought of as a certain number 
of wavelengths "nλ" out of focus, where λ is the common symbol for wavelength. 
Noticing that ff' is to a very high degree of precision just" equal to the average 
focal length squared, then 

                                                                                                 (E.4) 
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Where F is focal ratio. The final change in focus as measured by advancing 
or pulling back the eyepiece is 

 
                                            f - f’ = Δf = 8F² Δnλ                                       (E.5) 

As an aside, we can derive an expression for the depth of the shallow bowl in 
mirror by noting that the focal distance f in Eq. E.2 can be replaced by the radius 
of curvature R=2f, or 

                                                                                                                    (E.6) .
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Appendix F 
 
Glitter in a Shiny Sphere 

Figure F-1a shows a reflection in a small sphere. In its most general form, it 
is roughly shaped like a kidney bean, longer in the azimuthal direction than in the 
radial direction. Since the long axis of the bean is the limiting factor, an 
expression for this angle is derived first. 

We wish to calculate u, the long axis of the glitter. If the glitter is far enough 
from the center, its approximate length is given by 

 
                                                                                                                         (F.1) 
with x being the radius of the circle containing the glitter seen in perspective and 
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φ  being the angle of the source of light. If we turn the sphere to view the 
situation from the side (Fig. F-1c), the radius x is obtained from the great circle 
radius of the sphere R and the light diversion angle rθ  as in 
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with the complete expression being 

                                                                                                                   (F.3) 

Thus, for a 1-inch sphere (R = 0.5 inch) and a reflection of the Sun (φ  = 0.5° 
= 0.0087 radians), a reflection angle (θr) of 90° yields a glitter point 0.003 inches 
long. Thus, for a typical θr, the gleam of a solar reflection will be smaller than  
1/300 the diameter of the sphere. 
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Similarly, we can obtain an expression for the short axis (υ) of the bean. This 
dimension is obtained by perturbing Fig. F-1c around the average re- 
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Fig. F-1. The variables used to determine the size of the glitter reflected in a sphere. 

flection angle, 
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For the example situation, υ is 0.0015 inch. The glitter point is about twice as 
wide as it is long. 

For a nearly centered bounce with the gleam appearing near the middle of the 
sphere ( θr = 0) and for a very small source angle φ , the expression for υ is 
approximately 

.
2
φυ R

≅                                     (F.5) 

If we want to figure the size of the round gleam where the 1-inch reflective 
sphere is placed opposite to the Sun, we could use this approximation. The 
numbers are inserted this way (the angle must be in pure number format, i.e., 
radians): 

                                                                                                                    (F.6) .in==υ 0022.0
2

)0087(.5.0 radiansin

The glitter size shrinks to about 1/450 the diameter of the sphere at its smallest 
aspect. The source of light is nearly behind the viewer's head and the reflection is 
approximately centered in the shiny sphere for this favorable condition to occur. 



Appendix G 

List of Common Symbols 

Some symbols don't appear here at all because they are used in different ways 
in different locations (a good example is N). Some that do appear here 
occasionally are used in alternate ways. Most of symbols are used only in the 
way defined in this appendix, but if readers are unsure in any case, the immediate 
c ontext takes precedence. 

An nth order coefficient of aberration. 
c speed of light propagation. 

CCD acronym for charge-coupled device 
CD acronym for Compact Disc. 

D diameter of the objective lens or mirror. 
DAC acronym for digital-to-analog converter. 
Δf focus shift or change in focus. 
e 2.71828.... 
Ε energy. 

EER(θ) encircled energy ratio at angular radius θ. 
f effective focal length of the objective. 

F the focal ratio as used in formulas. 
f,f’,etc. various  focus  positions. 

f/# the  "f-number"  or focal ratio. 
h Planck's   constant. 
i 1−  

is The Strehl ratio. 
I(x',y') intensity at image point (x',y'). 
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Jo the zeroth-order Bessel function. 
k k = 2π/λ, called the "wave number." 
λ the  wavelength of light. 

ΜΑ the minor, or short axis 
of a Newtonian diagonal. 

MTF acronym for modulation transfer 
f iMult the multiplier of focal lengths in 
the distance of the source N. 

v frequency  (time or spatial). 
OTF the optical transfer function. 
φ reduced image angle Dθ/λ. 
π 3.14159.... 

P(x,y) the pupil function at position (x,y). 
R radius of  curvature. 

rAiry radius of Airy disk. 
RFT acronym for richest-field telescope. 
ρ radial coordinate of aper- 

ture (range 0 to 1). 
RMS acronym for root-mean- 

square deviation of wavefront. 
s the sagitta in all but Appendix B. 

σRMS RMS deviation of wave- 
front in wavelengths. 

SNR acronym for signal-to-noise ratio (S/N). 
Τ distance from focal plane to cen- 

ter of tube.   Ch. 6 and App. C. 
T(ρ) or T(x,y) transmission coefficient as a 

function of aperture radius. 
U(x',y’) complex scalar field value at point (x', y').

W(ρ) or W(x,y) aberration over the pupil in wavelengths. 
x or y usually the aperture coordinates. 

x' or y' usually the image coordinates. 
 



Glossary 

Aberration Any deviation from a spherically converging wavefront after the optical 
system has finished processing light is called an aberration. Aberration is 
commonly defined in one of two ways. The most convenient ray-optics usage 
expresses it as a deviation from the point of geometric focus. The wave optics 
convention defines it as deviation from a perfect converging sphere. These two 
seemingly different definitions are closely related. The slope of the wavefront 
determines the direction of ray propagation in a homogeneous medium. 

Accommodation A biological adjustment to changing light or focusing conditions. 
Achromat Literally meaning "without color," the term is used in astronomical optics to 

indicate a two-element refractor lens corrected for the dispersion of glass 
(chromatic aberration) over the color range of interest. The term achromat is a 
misnomer. For most doublets, only two colors are deliberately brought to a 
common focus, but the resulting folded spectrum offers much less dispersion than 
exists in simple lenses. (See refractor, apochromat, secondary spectrum, 
dispersion, and chromatic aberration.) 

Airy disk (Named after early 19th century scientist Sir George Airy.) The appearance of 
the central peak in the focused diffraction pattern superficially resembles a disk. 
The illusion is made stronger since the peak is surrounded by a zero-intensity 
region. The disk has a soft edge, so the effective radius of the central diffraction 
spot varies with the brightness of the image. Brighter spots look bigger. (See 
resolution.) 

Analytic geometry Originated by Pierre de Fermat and René Decartes in the early 17th 
century and further developed by later mathematicians, analytic geometry is a way 
of reducing geometrical relationships to algebra. 

Angle A division of a circle. Four measures are common in this book: radians ("natural" 
or unitless), degrees, arcminutes, and arcseconds. The measure denoted in the upper 
left hand corner of the star-test plots is a reduced angle valid for all instruments, the 
angle in radians times the ratio D/λ. (See resolution.) 

Annealed If materials are melted and allowed to cool below their solidification 
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temperature too quickly, they will exhibit permanent strains. Improperly annealed 
glass deforms under the influence of grinding and over time to make the surface 
shape uncontrollable. Almost never appearing in glasses made specifically for 
optical use, it often occurs in glass disks adapted for optics, but cast with another 
use in mind. 

Aperture The opening through which parallel light enters the telescope. Aperture is 
typically measured as the diameter of the most restrictive opening of the telescope 
before the light is focused. Some confusion may exist with the abbreviated 
photographic terminology that uses the term "aperture" interchangeably with "focal 
ratio."  Aperture is not used that way here. 

Aperture stop A physical obstruction (usually a circular hole) placed somewhere in front 
of the telescope. The function of the aperture stop is to limit the aperture in a 
specific plane.  (See field stop.) 

Apochromat If three chosen colors are simultaneously focused, the lens is said to be 
apochromatic. The classical definition also includes corrections for spherical 
aberration and coma. Because three colors within the spectral range of interest are 
held to a common focus, secondary spectrum is markedly reduced. (See also 
achromat, refractor, secondary spectrum, and chromatic aberration.) 

Apodization Shading the aperture to diminish diffraction rings. This term has come to 
refer to modifying the transmission and phase of the aperture to achieve any sort of 
diffraction pattern change. 

Arcminute 1/60 of a degree or 1/21,600 of a full circle. (See also arcsecond, degree, 
radian, and angle.) 

Arcsecond 1/60 of an arcminute, 1/3600 of a degree, or 1/1,296,000 of a full circle.           
1 arcsecond = 4.848 × 10-6 radians. (See arcminute, degree, radian, and angle.) 

Aspheric surface In optics, a concave or convex surface that superficially resembles a 
sphere but has another shape. Most commonly applied to conic sections spun on 
their axes. 

Astigmatism An aberration that results from two radii of curvature oriented at right 
angles to one another on an optical surface. (See aberration.) 

Attenuation A diminishing of wave intensity that includes diffraction, scattering, 
spreading of the beam, and absorption. 

Bandwidth/bandpass The frequency range passed by a given filter. 
Barlow lens A diverging lens placed near focus to increase the effective focal length of 

an instrument without appreciably increasing the telescope's physical size. 
Bench test An indoor, laboratory-style test generally used during the fabrication of 

optics.   Because of the necessarily compact nature of the testing 
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geometry, most bench tests of astronomical instruments use secondary references or 
complicated data reduction procedures. 

Catadioptric A mixed lens-mirror system that makes up the objective or main optical 
group. 

Caustic A region where rays of light cross each other and pile up. Focus is a caustic, but 
this word also refers to the one-dimensional focusing that occurs with astigmatism 
or even the quasi-focusing that occurs in systems suffering from aberrations. In 
geometric optics, caustics are regions where the ray-tracing formalism breaks 
down. 

Chromatic aberration Color errors caused by the dispersion of light in glass. Bringing 
the colors to different focus points has two forms of damaging effect on the image: 
all colors except those in focus are imaged as expanded disks, and magnifications 
vary with color. (See refractor, achromat, dispersion, and apochromat.) 

Collimation Here, collimation is used to indicate achieving accurate alignment. More 
properly, it refers to the generation of a flat wavefront, but good alignment and a 
good wavefront are usually inseparable. 

Coma An aberration that occurs when some optical systems are tilted. Rare in quality 
refractors, it is very common in reflectors and catadioptric systems. Coma results in 
a fan-like distortion. (See aberration) 

Corrector  (See Schmidt corrector and meniscus.) 
Correlation An expression of the similarity of two functions as they are offset from one 

another. If the functions are precisely the same, the maximum correlation is one. 
Criterion (resolution) In astronomical optics, this term refers to a certain separation in 

resolved objects (as in "the stars were separated just at the Rayleigh criterion"). 
Colloquially, it has been also used for stating optical quality, as in "the 1/4-
wavelength Rayleigh criterion," although this terminology is properly replaced by 
"the 1/4-wavelength limit." (See Rayleigh tolerance or Rayleigh criterion.) 

Curtate cycloid A cycloid is the path followed by a point on the rim of a wheel. A curtate 
cycloid is the path of a point nearer the axle. 

Dawes criterion A separation angle of about 1.02λ/D. It occurs between the loose 
Rayleigh criterion and the tight Sparrow criterion. 

Decibel A change in intensity of sound (or any signal) by a factor of 10 was originally 
termed "a bel." Since this change was too coarse, bels were never used. People 
much preferred the finer "decibel" measure. The dB level of I1  referenced to I2 is 
10 log10( I1/ I2). 

Defocus The amount of defocus as used here is more precisely the defocusing aberration 
measured in wavelengths of light.    This number is not to be 
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confused with defocus distance, or how far one must move the eyepiece to obtain 
defocusing aberration. (See Table 5-1.) 

Degree 1/360 of a full circle. The reason early mathematicians probably used such a 
peculiar number is because it can be divided into so many whole number portions: 
180, 120, 90, 72, 60, 45, 36, 30, 20, 18, 16, 15, 12, 10, 8, 6, 5, 4, 3, and 2. This 
measure was very helpful before the decimal number system was invented (with its 
compact algorithm for long division). Also equal to π/180 or about l/57.3 radian. 
(See arcminute, arcsecond, radian, and angle.) 

Dielectric A non-conducting material that becomes polarized in an electric field (i.e., that 
develops "electric poles" similar to "magnetic poles"'). Many such materials are 
transparent to visible light. Glass, polyester, air, and quartz are all examples of 
dielectrics. 

Diffraction-limited Used conventionally as an equivalent for the l/14-wavelength RMS 
wavefront deviation limit of Marechal. Colloquially, it is used to mean the same 
thing as the 1/4-wavelength Rayleigh limit, but that usage is only true for broadly-
varying wavefront deformations such as correction error. 

Diopter A measure of lens focusing strength. A lens having a strength of 2 diopters has a 
focal length of 1/2 meter, 3 diopters has a focal length of l/3 meter, etc. Thus, the 
human eye, which is focused at a distance of about an inch, has a native strength of 
roughly 40 diopters. Focusing corrections typical in eyeglasses—1 to 4 diopters—
are minor adjustments. 

Dispersion Frequency or color dependence of optical effects. Dispersion in refractive 
materials leads to desirable effects in spectroscopes and undesirable effects when 
white-light images are the goal. The phenomenon of chromatic aberration in lenses 
is a difference of focal lengths for light at various portions of the spectrum. It 
results in the breaking of white light into rainbow colors. 

Doublet Two lenses placed in close proximity that act as if they were a single unit. Used 
to correct various single-lens defects, especially chromatic aberration.  (See 
achromat and chromatic aberration.) 

Dynamic range The intensity range over which a sensor or emitter is approximately 
linear. Dynamic range is typically written in decibels. 

Effective Effective is applied to another quantity such as focal length or focal ratio. 
Complicated multi-element systems like Cassegrain telescopes or the use of a 
Barlow lens on a telescope demand some sort of leveling terminology to make 
their description comparable. "Effective focal length," for example, is the same as 
the focal length if the complicated optics were replaced by a single thin lens. 
"Effective focal ratio" is determined by examining how precipitously the light 
cone converges to focus. Cassegrain telescopes are much shorter than their 
effective focal lengths and ratios indicate. 
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Evanescent waves Waves that can only occur at the interface between media of different 
optical characteristics. They cannot propagate away from the interface and are 
bound to that surface. 

Field stop A mask defining the field near focus. It is usually visible in the eyepiece as a 
sharply defined circle. This circle is not the edge of the main lens or mirror, but is 
contained in the eyepiece itself. It can be seen in most eyepieces by removing the 
eyepiece and turning it upside down. It is the sharp-edge opening through which the 
lenses can be seen. (See aperture stop.) 

Figure (Noun) The surface shape of an optical surface. (Verb) To perform polishing 
operations to achieve the proper shape. 

Focal length If an infinitely distant target is imaged by a lens or mirror, the focal length of 
the optical element is the distance from the lens or mirror such that the sharpest 
image of the target is found. Here, if no other indication is given, the focal length 
refers to the effective focal length of the objective system, rather than the eyepiece. 

Focal ratio The ratio between the effective focal length and the aperture is the focal ratio. 
It is written as F = f/D, where F is the focal ratio, D the diameter of the aperture, 
and / the focal length. By convention, a 6-inch telescope with a focal length of 48 
inches is referred to as an "f/8" system because 48/6 equals 8. 

Fourier transform A mathematical procedure used to derive the frequency content of a 
function. 

Foucault test  A test using an obscuring edge placed near a point or slit focus. 
Fraunhofer lines Dark lines in the solar spectrum labeled by the alphabet. 
Fresnel zone A conceptual device to keep track of the phase sign. At locations where the 

wave is above its average value, it is in a positive Fresnel zone, and where the wave 
is below its average value, it is in a negative Fresnel zone. Thus, a given Fresnel 
zone applies only at an instant of time and is only an approximation of what is 
really happening. 

Gaussian function A function of form Ae -x/w² , with amplitude A and 1/e half-width w. 
Random deviations often follow a Gaussian distribution, as does the well-known 
"bell curve." 

Geometric shadow In the light-as-particles ray tracing approximation, the geometric 
shadow consists of the regions beyond the cone extending from the aperture and 
passing through focus. 

Grit Loose particles of abrasive used in grinding optical surfaces. Grit sizes range from 
coarse sandlike grains to powdered finishing abrasives. 

Hyperboloid A three-dimensional surface having a blunted cone shape. 
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Incoherent When two waves are added, they are said to be incoherent if they have no 
phase relationship with one another. At one instant, they may add constructively, 
and at the next, subtract destructively. Coherent light is usually derived from the 
same atomic transition or the same cavity resonance (in lasers), incoherent light 
from unrelated transitions. Severely restricting the geometry (as in focusing light on 
one or more slits) will often achieve approximate spatial coherence of even 
temporally incoherent light. In the star test, light is emitted from an insensibly 
small point, a star or a pinhole, so the Huygens-Fresnel principle treats it as 
coherent (See interference.) 

Index of refraction  (See refractive index.) 
Intensity As used here, intensity is proportional to the wave value squared. Actually, this 

number is not intensity as defined radiometrically, but the misuse has become 
customary. 

Interference When intensity is calculated from the sum of two coherent waves, it is 
figured something like this equation: I= ( W1+W2)2 = (W1)2+(W2)2+2W1 W2. The 
term on the end of the equation is called the interference term. If W2 = - W1, this 
term completely cancels the first two. If W2 = W1, the intensity is doubled. For 
incoherent light, this term can be anything at a given instant, but it averages over 
longer times to zero. 

Iris An aperture stop that is adjustable in diameter. The eye has an iris and most cameras 
have a leaf-type iris used to adjust the aperture ratio. An iris is typically placed in 
or near a pupil in an afocal beam of light. (See aperture stop.) 

Knife-edge test  Colloquial expression for the Foucault test. 
Lap A contraction of "lapping tool," it is a disk coated with pitch and powdered polishing 

agent in a slurry of water. Laps are used to polish optics. Typically, they are 
crossed by trenches ("channels") that have been cut into the lap to ease 
conformance to the optical element being worked. 

Longitudinal As used here, an orientation along the axis of the instrument. The opposite 
of transverse. The conventional image as viewed in an eyepiece is a transverse 
slice. A longitudinal slice is usually in a plane passing through the centers of the 
objective and eyepiece. 

Magnification Literally, the object size divided by the image size. The usefulness of this 
term breaks down when we talk about very distant, very large objects. In 
astronomical telescopes, it is much more common to speak of angular 
magnification. Angular magnification refers to the angle subtended by the object in 
the eyepiece divided by the angle subtended without optical aid. Thus, if we look at 
the half-degree Moon in binoculars with a magnification of 7, we should see an 
image that extends an apparent 3.5 degrees. 
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Magnitude The magnitude difference between two stars is — 2.51og10( I1/ I2). Thus, if 
one star is 10 times brighter than another, it is only 2.5 magnitudes brighter. 
Magnitude is similar to the decibel scale used in electronics or sound and the 
Richter scale of earthquakes. For historical reasons, it increases with dimmer stars. 

Meniscus Optically, a meniscus is a strongly bent lens with a great deal of curvature but 
little focusing power. In other words, its curvature on the rear side is very near that 
of its front. The corrector lens of a Maksutov telescope is a meniscus. 

Micrometer A unit of measure equal to 10-6 meters. Twenty years ago, this unit was in 
common use as the "micron." Actually, by international convention, all metric units 
of length are denoted "-metre," but this convention is not followed here. 

Microripple A surface roughness originating from a correlated area on the order of 1 mm 
across. Microripple is usually of very small amplitude. 

Model, modeling Fitting a phenomenon to a mathematical system that may or may not be 
physically derived. The fit can be empirical, with no scientific basis, but the best 
and most extensible models are usually derived from fundamental theory. 

Modulation transfer function MTF predicts the ability of an optical system to preserve 
light-dark contrast in periodic targets with finer and finer bar spacing. 

Newtonian telescope The parabolic reflector was first announced by Sir Isaac Newton in 
1672. It was not useful for astronomical purposes until John Hadley made the first 
approximately paraboloidal surface in 1721. 

Normalized An integral that is normalized has been reduced to a value of one in an ideal 
case. Thus, an integral of, say, energy over the aperture is multipled by a constant 
to yield a value of 1.00. Such a procedure is useful in comparisons of imperfect 
apertures to perfect ones. 

Objective The main image-forming element or group of elements in a telescope. Often, it 
is useful to equate "objective" with "non-removable" optics in the system. 

Oblate spheroid A conic surface of revolution that is flatter in the middle. An oblate 
spheroidal mirror focused at infinity has more spherical aberration than a sphere. 

Optical transfer function Full complex form of the spatial-frequency transfer function. 
Its absolute value is the modulation transfer function. Gives the contrast and shift in 
position of a sinusoidal bar pattern. 

Overcorrected A form of low-order spherical aberration in which marginal rays cross 
beyond the focus of central rays. In Newtonian telescopes, an over-corrected mirror 
is hyperboloidal. (See undercorrected.) 
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Paraboloid A theoretical curve between prolate spheroids and hyperboloids. Represents 
the ideal in making Newtonian telescope mirrors. 

Paraxial focus The focus of rays incident at or near the center of the mirror and parallel to 
the axis of the instrument. Seldom the same as "best" focus. 

Photodetector A sensor capable of detecting one or a few individual photons. 
Pit An unpolished crater left over from the grinding process remaining in a polished 

surface. 
Polychromatic Having many colors. White light is polychromatic. 
Primary aberrations Pure low-order forms of aberrations. Examples include coma, 

spherical aberration, and astigmatism, etc. (Also called Seidel aberrations.) 
Primary ripple Coarse, quasi-periodic roughness having a spacing about the same as the 

channels in the lapping tool. (See lap.) 
Prolate spheroid A conic surface of revolution intermediate between a sphere and a 

paraboloid. 
Quantum mechanics A name applied to the wave theory of matter. When wavelike 

particles are caught in a potential well (such as an electron in the Coulomb field of 
an atom), the requirement that the waves precisely fit in these wells demands that 
only certain energy states be occupied. Thus, energy can only be added or 
subtracted to such systems in discrete steps (called quanta). 

Radian The measure of angle equal to moving one unit along the perimeter of a circle 
with unit radius. A radian is the "natural" measure of angle in that it is unitless. The 
word "radians" is actually a placeholder. A frequency of 2π radians/second is the 
same thing as 2π/second. An angle of 2π means that one full cycle of a circle has 
been traversed. (See angle, arcminute, arcsecond, and degree.) 

Radiator An elemental source of secondary waves used in the Huygens-Fresnel theory of 
diffraction. 

Rayleigh criterion When a double star is separated by an amount equal to the radius of 
either star's Airy disk, the separation is said to be just at the Rayleigh criterion. 
Most observers are able to resolve stars separated by less than this amount, but 
they do so more by shape of the pair rather than darkening between them. 

Rayleigh tolerance or limit Optics that satisfy Rayleigh's limit produce wavefronts that 
can be enclosed by concentric shells with radii differing by 1/4 wavelength of 
yellow-green light. (See RMS.) 

Refractive index The ratio of the speed of light in empty space to the speed of light in a 
material. Examples: water has a refractive index of 1.3 and most glasses are 
somewhere over 1.5. Refractive index varying with wavelength is a conventional 
way of describing dispersion. 
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Resolution A measure of optical quality that depends solely on whether two equally 
bright incoherent points or bands of light are distinguishable. (See modulation 
transfer function and optical transfer function.) 

RMS Stands for "root mean square," or the square root of the averaged deviations 
squared. In telescopes, RMS is used as a measure of surface quality of optical 
elements, with lower values for more perfect optics. 

Rouge (or Jeweler's rouge) A powdered oxide of iron used in polishing compounds. 
Scattering Diffraction from randomly distributed optical defects or obstructions. 
Schiefspiegler A German word meaning "oblique reflector." A schiefspiegler is a 

telescope that avoids the additional diffraction of central obstruction by using tilted, 
round mirrors. 

Schmidt corrector A plate placed in the incoming parallel beam to introduce an equal 
and opposite amount of spherical aberration to that produced by the rest of the 
optical system. The typical curve defining a Schmidt corrector is a 4th-order radial 
polynomial. 

Secondary spectrum The residual chromatic aberration that exists in the bright portions 
of the spectrum (among the deliberately corrected wavelengths) even after a good 
attempt has been made at fixing color error. (See chromatic aberration, 
achromatic, apochromatic, and dispersion.) 

Seidel aberrations The earliest formal description of spherical aberration, coma, 
astigmatism, field curvature, and distortion using polynomials and trigonometric 
functions. Also called the "primary" aberrations, or the first non-trivial components 
of a generalized aberration expansion. 

Shading  (See apodization.) 
Signal-to-noise ratio (SNR) A comparison between the amount of interesting 

information to the amount of non-interesting information as it is transferred 
through a system. Because the noise power is usually so much less than the signal 
power, the SNR is usually given in decibels. Higher SNRs are desirable. (See 
decibels.) 

Sparrow criterion If the separation of two points of light is set to where the diffraction 
structure creates a flat isthmus bridging them, then they are said to be separated by 
the Sparrow criterion. 

Speckles Little points of light surrounding the image produced from rough surfaces or 
turbulent media. Speckles are caused by interference. 

Spherical aberration When the converging wavefront is subtracted from a sphere 
centered on best focus, any remainder described by radial polynomials of low order 
is called "spherical aberration." 
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Strehl ratio The ratio of the maximum central brightness of an aberrated aperture's image 
to what it would be if the aberration were removed. A Strehl ratio of 0.8 is 
associated with the 1/4 - wavelength Rayleigh tolerance. 

Substrate A telescope mirror is a layer of metal about 100 nanometers thick. The glass 
holding it is properly termed the "substrate." 

Superposition If the combined effects of two waves are no more complicated than the 
simple sum of the waves, the system is called linear, and the net effect is called a 
linear superposition of the two waves. In other words, no effect arises from one 
wave's influence on the other. Intense light beams do not obey superposition in 
nonlinear media. All optical phenomena in this book are assumed to be linear. (See 
interference). 

Telephoto A rear lens element that lengthens the effective focal length. Differs from a 
Barlow lens primarily in that it cannot be removed and was specifically designed to 
work with the optical system. 

Undercorrected As used here, a type of low-order spherical aberration in which marginal 
rays cross nearer to the objective than the central rays. 

Wave function The three-dimensional function describing a wave, generally including its 
amplitude, phase, and direction of propagation. 

Wavelet Here, this term refers to the tiny subsequent waves emitted by the Huygens-
Fresnel radiators. It also refers to a mathematical method used in signal processing, 
but that usage does not apply in this book. 

Wedge A prismatic aberration of refractor lenses. Although wedge can result from a lens 
that is actually thicker on one side, it can also result from a decentered symmetric 
lens. 

Zones A contraction of "zonal defects," they are a special case of spherical aberration. 
"Zones" can be thought of as localized circular corrugations on the surface. 
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artificial source (cont.) A 
spherical re lector 88f

aberration function. aspherical figuring 202 
astigmatism 254 astigmatism 5, 32, 251 
medium-scale roughness 241 diagnosing cause 258 
misalignment 106 in star test 90, 258-260
pinching 147 ASYMM program 317 
small-scale roughness 247 atmospheric turbulence 129 
spherical aberration 174 audio analogy 38 
tube currents 139
turbulence 131 
turned edge 211 Β 
zones 205 bandpass, optical system 46 

accommodation 19, 79, 93 black spheres 90 
accordion box 91 boundary-value problem 58, 308
achromatic lens 222
achromatism, Isaac Newton 222 
aggregate error 265 c 
air, index of refraction 129 calculation methods 307 
Airy disk 11, 334 Cassegrain design 171 
alignment 17, 22, 104, 266 causality 62 

Newtonian 109 caustic test 284
refractor 121 caustic 170 
Schmidt-Cassegrain 125 Ceravolo's mirrors 267 

aperture, as fundamental filter 37 chromatic aberration 219 
APERTURE program 307, 316 eyepiece 232 
apochromatic lens 226 in eye 231 
apodization 160—166 clean optics 168 
artificial source 77, 82 clips, mirror 25, 114 

at night 90 collimation 17, 22, 104 
color correction 90 colored filters in star test 93, 227
disadvantages 83 coma 23, 106 
distance 83 mix with astigmatism 104
distance r Schmidt-Cassegrains fo complain, how to 273 

86 contrast reversal 52 
example 97-100 convective cell 131 
flashlight illumination 90 coordinates of light 57 
induced spherical aberra ion 83t cycloid, curtate 147, 345
modifying separation 98 
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size 86 
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Danjon and Couder conditions 8 Foucault test 167, 239, 278 
Dawes criterion 286 Fourier 62, 71
decentering error 228 Fraunhofer 26 
defocus distance 20, 78, 337           approximation 310 
defocused, definition 2          lines 224
defocusing aberration 75, 173 Fresnel approximation 310 
deformed optics 1 5 4 Fresnel zones 66-70 
depth of focus 79 Fresnel-Kirchhoff formula 308 
diagonal size, exce ive cures 156ss
diffraction rings 10 G 
diffraction, and focusing 65 Gaussian pupil transmission 161 
diffraction 55 geometric Ronchi test 289-297 
dispersion 220 geometric shadow 56 
Dobson, John 88 grinding, astigmatism 5 
dog biscuit 236 guitar string 70 
Dollond, John 223
dust and scratches 166 Η 
Ε Hall, Chester Moor 223 

Hartmann test 284 
electronic pop 61 Heisenberg indeterminacy 60 
encircled energy ratio (EER) 197 HST (Hubble Space Telescope) 172 
encircled energy Huygens, Christian 63
         secondary obstruction 154 Huygens-Fresnel principle 307 
         spherical aberration 177 Hz (hertz), definition 39
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         16" f/4 Newtonian 97
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          6" f/12 apochromatic refractor 98 image evaluation, blind test 267 
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eye, automatic focus 93 image, as reproduction 35
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eyeglasses 18, 252 indeterminacy principle 60 
eyepiece motion, 77-81 interferometer tests 298 
         internal focusing mechanisms 81 iridescence 298 

 table of 80 
eyepiece, in star test 17 K 

F knife-edge test 167, 239, 278 
fast Fourier transform 314 L 
field stop 9 Labeling of image frames 333 
filter, colored 93, 98, 227 location, in star test 17, 138, 243 
fine-alignment 117 longitudinal slice 73, 187-190 
fixed eyepiece viewpoint 9 lowpass filters 42 
fixing telescope flaws 269 Μ 
fluorescent lights 41 
focus accommodation 19, 79, 93 magnification as oversampling 42 
focus position with artificial source Maksutov telescope 171 

83 86 - maps and surface error 236
focus trick 93 Marechal's tolerance 7, 9, 238 
focus, types 174 microripple 237, 246 
focuser motion, in star test 18, 78 microscopy 38 
focusing error, fix first 272 microwave oven 72 
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midpoint-displace ent fractal m photographic plates 284 
       algorithm 131 physical optics 15 
misalignment 17, 22, 104, 109, 121, Pickering's seeing scale 136 

      125, 266 pinched optics 25, 145 
MTF (modulation transfer function) 9, pinch 

       46 horizontal star test 92
as autocorrelation 315 in thin-mirror reflectors 151 
astigmatism 256 pinholes 83-88 
definition 47 pitch
defocusing 51                  operating principles 5 
higher-order spherical aberration         physical cha acteristics 5 r
         194 polishing 28 
lower order spherical aberration point-spread function 62 
          176 point-diffraction interferometer 302 
medium-scale roughness 242 Poisson, S.D. 21 
multiple optical problems 52, 267 power conservation 11 
obstruction 155 primary ripple 236 
of symmetric apertures 313 printing image frames 324 
pinched optics 147 propagation, defi ition 63n
small-scale roughness 247 pupil function 74 
spiders 158 pupils, Gaussian 161 
tube currents 140 pupils, super-resolution 160 
turbulence 136 
turned edge 211 

R 
zones 205 radial bar target 52 

mythology of telescopes 15 radiators 64 
radio telescope 40 Ν 
ray tracing (geometric optics) 22, 56

Newtonian reflector, quality 28 Rayleigh criterion 286 
nodes and antinod  es 70—74 Rayleigh tolerance 6 
null test 172, 304 Rayleigh-Taylor instability 130 
numbering in image frames 333 rear-view mirrors 9 8
numerical model, limitations 320 red dot effect 230 

refractive/reflective optics 26
Ο remedies, turned edge 217

residual chromatic aberration 224
obstruction mask, 33% 94 resolution, audio 39 
obstruction 20, 15  3 resolving power test 286 

tolerance 155 resonance, cause for dispersion 224 
offset, diagonal 114 Ritchey-Chretien-Cassegrain 172 
ordering of diagnosis 19 Ronchi test 289-297
OTF/MTF as autocorrelation 315 rough surface 28, 235 
other tests 277 roughness in the eye 240
out-of-focus, defin ion 2 it roughness scales 238 
overcorrection 171 
oversampling 41 S 

Ρ sagitta 78, 337 
sampling errors in calculations 320

paraboloid 171 scaled accuracy o  wavefront 3 f
perfect optics, diffraction pattern schiefspiegler 79 

characteristics 11, 14 Schmidt-Cassegrain 171 
perspective compression 38 scratches and dust 166 
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secondary sources 64 surface roughness 235 
secondary spectrum 224 
"seeing" filters 165 Τ 

temperature effects 25, 187  
torus 252 
transmission, negative 161 
 tube currents 24, 139 

sensitivity of star test 78, 81-82  
shading 160 
shrinkage with cooling 146  
signal-to-noise ratio (SNR) 43, 167, 

249  
signature of reproduction device 62 
simple lenses 219  
site modification 14, 138  
site selection 91  
skyglow 38 

turbulence cells, origin 23 
turbulence, ground 91, 138 
turbulence 23, 129  
turned edge 5, 31, 203, 209 
twinkling 24 

snap test 18, 93, 98 
SNR 43, 167, 249 U 

soap bubbles 298 undercorrection 171 
Sparrow's criterion 287 
spatial frequency response 45 V 
spherical aberration 26, 170, 174 
spherical reflector as an artificial

vignetting 85 
source 88 

spiders 157-160 W 

stack of filters 3  5 "warm" colors 41 
star, as target 18 wave sum 67 
star test 17 wavefront error,   measure of quality 6

2:1 criterion for spherical wedge error 228 
aberration 190-192 Welford's 20 focal length rule 83 

apochromats and advanced white light diffraction pattern 13 
designs 23  1 wire test 284

astigmatism 258 
chromatic aberration 227 Ζ 
conventional doublets 229 
Ellison's variant 179 Gaussian 
pupil 163 

Zernike polynomials 174 
zonal aberration 31, 201 

higher-order spherical aberration 
194 

inequalities of focus 311 
low-order spherical aberration 

178 
medium-scale r ughness 243 o
obstruction 155 
pinched optics 148 
spider diffraction 159
tube currents 142 
turbulence 136 
turned edge 211 
zones 207 

star-test etiquette 273 
strained optics 25, 145 
Strehl ratio 9, 148, 198, 238
subwoofer 40 
surface deformation at microscopic 
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Optional Software 

APERTURE is the IBM-PC program written by Dick Suiter to calculate 
most of the diffraction patterns appearing in his book Star Testing Astronomical 
Telescopes. With APERTURE you can investigate the most common 
aberrations, including spherical aberration (low and high order), zones and 
turned-down edges. It easily defocuses the image to show the actual perceived 
behavior on either side of focus. Users can specify many transmission patterns, 
such as obstruction and apodized pupils. If the many built-in aberrations and 
transmissions are not enough, you can construct your own. Sold only to 
purchasers of the book. 

APERTURE has fewer approximations than ray-tracing routines. It shows 
the spreading of energy into the Airy disk caused by the wave nature of light. 
APERTURE displays images with a smooth 256-level gray scale (VGA monitors 
only). It also performs many other auxiliary calculations including the optical 
transfer function, field phase, and encircled energy function (EGA, VGA and 
Hercules-compatible monitors). 

APERTURE accepts input from Suiter's Foucault test-reduction program 
ADMIR (also available from Willmann-Bell for $19.95 plus $1.00 handling for 
domestic orders), so you can knife-edge test an imperfect paraboloid and then 
feed the results directly to APERTURE. You can thus derive the actual 
diffraction pattern produced by that optical surface as well as its ability to 
preserve contrast. A PostScript utility program is provided to generate the same 
sort of images that appeared in the book. 

APERTURE works on a 286 MS-DOS machine, although it is best on a 386 
processor or higher. A coprocessor is recommended. It supports EGA and 
Hercules-compatible monitors, but a VGA board and color monitor are required 
for gray scale displays. 

Turn page for order form. 
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Order Form 

Ο APERTURE for the IBM-PC at $24.95 each. $ ___________  
Ο 5.25-inch 360K    Ο 3.5-inch 720K 

Ο ADMIR for the IBM-PC at $19.95 each. $ ___________  
Ο 5.25-inch 360K    Ο 3.5-inch 720K 

Handling1 1.00 

TOTAL $ ___________  

I wish to pay with: 
Ο Check Ο Money Order 
Ο Visa      Ο MasterCard       Ο American Express 

Card No _________________________________________________________________  

Card expiration date _______________________________________________________  

Signature ________________________________________________________________  

Name (Please Print)________________________________________________________  

Street ___________________________________________________________________  

City, State, ZIP ___________________________________________________________  

Willmann—Bell, Inc. 
P.O. Box 35025 

Richmond, Virginia, 23235 
Voice (804) 320-7016 FAX (804) 272-5920 

Prices Subject To Change Without Notice 

This Book's Serial Number is    __________________ 

1 Foreign orders:  shipping charges are additional.   Write for proforma invoice which details your 
exact costs for various shipping options. 






